
ɱɬɨ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ, ɩɪɢ ɤɨɬɨɪɵɯ ɢɦɟɸɬ ɦɟɫɬɨ ɬɚɤɢɟ ɤɚɱɟɫɬɜɟɧɧɵɟ ɢɡɦɟɧɟɧɢɹ, 
ɧɚɡɵɜɚɸɬɫɹ ɛɢɮɭɪɤɚɰɢɨɧɧɵɦɢ. Ⱦɥɹ ɩɨɥɧɨɝɨ ɩɨɧɢɦɚɧɢɹ ɩɨɜɟɞɟɧɢɹ ɫɢɫɬɟɦɵ ɡɧɚɧɢɟ 
ɟɟ  ɛɢɮɭɪɤɚɰɢɨɧɧɵɯ  ɩɚɪɚɦɟɬɪɨɜ  ɚɛɫɨɥɸɬɧɨ  ɧɟɨɛɯɨɞɢɦɨ.  Ɋɚɫɫɦɨɬɪɢɦ  ɫɥɟɞɭɸɳɟɟ 
ɷɜɨɥɸɰɢɨɧɧɨɟ ɭɪɚɜɧɟɧɢɟ: 
 
ɝɞɟ  ɯ  ɨɩɪɟɞɟɥɟɧɨ  ɜ  ɧɟɤɨɬɨɪɨɦ  ɩɪɨɫɬɪɚɧɫɬɜɟ,  r  ɩɪɟɞɫɬɚɜɥɹɟɬ  ɫɨɛɨɣ  ɜɟɤɬɨɪ 
ɩɚɪɚɦɟɬɪɨɜ,  ɚ  f — ɜɟɤɬɨɪ-ɮɭɧɤɰɢɹ,  ɭɞɨɜɥɟɬɜɨɪɹɸɳɚɹ  ɨɩɪɟɞɟɥɟɧɧɵɦ  ɬɪɟɛɨɜɚɧɢɹɦ. 
ɍ ɧɟɝɨ ɦɨɝɭɬ ɛɵɬɶ ɪɟɲɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɬɢɩɨɜ — (I) ɩɨɫɬɨɹɧɧɵɟ, (II) ɩɟɪɢɨɞɢɱɟɫɤɢɟ, 
(III) 
ɫɭɛɝɚɪɦɨɧɢɱɟɫɤɢɟ, (IV) ɚɫɢɦɩɬɨɬɢɱɟɫɤɢ ɤɜɚɡɢɩɟɪɢɨɞɢɱɟɫɤɢɟ ɢ ɬ.ɩ. 
Ɋɚɫɫɦɨɬɪɢɦ ɫɥɭɱɚɣ ɪɚɜɧɨɜɟɫɢɹ f(x,r) = 0. ȿɫɥɢ ɨɫɨɛɨ ɧɟ ɨɝɨɜɨɪɟɧɨ, ɞɚɥɟɟ ɜɫɟɝɞɚ 
ɛɭɞɟɦ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ f ɞɢɮɮɟɪɟɧɰɢɪɭɟɦɚ ɫɬɨɥɶɤɨ ɪɚɡ, ɫɤɨɥɶɤɨ ɷɬɨ ɧɟɨɛɯɨɞɢɦɨ. 
ɉɨɥɨɠɟɧɢɟ  ɪɚɜɧɨɜɟɫɢɹ  ɦɵ  ɦɨɠɟɦ  ɪɚɫɫɦɚɬɪɢɜɚɬɶ  ɤɚɤ  ɮɭɧɤɰɢɸ  ɩɚɪɚɦɟɬɪɨɜ.  ɉɪɢ 
ɡɚɞɚɧɧɨɦ  ɧɚɛɨɪɟ  ɩɚɪɚɦɟɬɪɨɜ  ɭɪɚɜɧɟɧɢɟ  ɱɚɫɬɨ  ɦɨɠɟɬ  ɢɦɟɬɶ  ɧɟ  ɨɞɧɨ,  ɚ  ɧɟɫɤɨɥɶɤɨ 
ɩɨɥɨɠɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹ, ɢ ɨɫɧɨɜɧɨɣ ɜɨɩɪɨɫ, ɤɨɬɨɪɵɣ ɦɵ ɡɞɟɫɶ ɧɚɦɟɪɟɧɵ ɨɛɫɭɞɢɬɶ, 
ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɤɚɤ ɪɚɜɧɨɜɟɫɢɟ ɡɚɜɢɫɢɬ ɨɬ ɩɚɪɚɦɟɬɪɨɜ ɡɚɞɚɱɢ. 
ɉɭɫɬɶ ɞɥɹ ɭɞɨɛɫɬɜɚ x ɢ r ɩɪɢɧɚɞɥɟɠɚɬ R
1
. Ȼɢɮɭɪɤɚɰɢɨɧɧɚɹ (ɫɬɚɬɢɱɟɫɤɚɹ) ɡɚɞɚɱɚ 
ɷɤɜɢɜɚɥɟɧɬɧɚ  ɢɫɫɥɟɞɨɜɚɧɢɸ  ɤɪɢɜɵɯ  f(x,r) = 0 ɢ  ɢɯ  ɨɫɨɛɵɯ  ɬɨɱɟɤ.  Ɉɫɧɨɜɧɵɦ 
ɢɧɫɬɪɭɦɟɧɬɨɦ  ɞɨɤɚɡɚɬɟɥɶɫɬɜɚ  ɫɭɳɟɫɬɜɨɜɚɧɢɹ  ɪɟɲɟɧɢɣ  ɜ  ɬɟɨɪɢɢ  ɛɢɮɭɪɤɚɰɢɣ 
ɹɜɥɹɟɬɫɹ  ɬɟɨɪɟɦɚ  ɨ  ɧɟɹɜɧɨɣ  ɮɭɧɤɰɢɢ  ɞɥɹ  ɜɟɤɬɨɪɧɨɡɧɚɱɧɵɯ  ɮɭɧɤɰɢɣ  ɦɧɨɝɢɯ 
ɩɟɪɟɦɟɧɧɵɯ (ɫɦ.,  ɧɚɩɪɢɦɟɪ,  ɑɭ  ɢ  ɏɟɣɥ, 1982). ȼ  ɨɞɧɨɦɟɪɧɨɦ ɫɥɭɱɚɟ ɷɬɭ ɬɟɨɪɟɦɭ 
ɦɨɠɧɨ ɫɮɨɪɦɭɥɢɪɨɜɚɬɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: 
Ʌɟɦɦɚ. (Ɍɟɨɪɟɦɚ  ɨ  ɧɟɹɜɧɨɣ  ɮɭɧɤɰɢɢ  ɜ R
1
.)  ɉɭɫɬɶ  f(x
0
,r
0
) = 0 ɢ  f  ɩɪɢɧɚɞɥɟɠɢɬ 
ɤɥɚɫɫɭ ɋ
1
 ɜ ɧɟɤɨɬɨɪɨɣ ɨɬɤɪɵɬɨɣ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ (x
0
,r
0
) ɧɚ ɩɥɨɫɤɨɫɬɢ (x,r). Ɍɨɝɞɚ 
ɟɫɥɢ f
x
 ≠0, ɬɨ ɫɭɳɟɫɬɜɭɸɬ ɬɚɤɢɟ 
α
, 
β
 >0, ɱɬɨ (I) ɜɫɹɤɢɣ ɪɚɡ, ɤɨɝɞɚ x
0 
- 
β
 < ɯ < ɯ
0 
+ 
β
 ɢ 
r
0
 - 
α
 < r < r
0
+
α
, ɭɪɚɜɧɟɧɢɟ f(x, r) = 0 ɢɦɟɟɬ ɟɞɢɧɫɬɜɟɧɧɨɟ ɪɟɲɟɧɢɟ ɯ = ɯ(r), ɢ (II) 
ɫɭɳɟɫɬɜɭɟɬ x
r
(r), ɩɪɢɱɟɦ x
r
(r) = -f
r
(x(r)/f
x
(x(r),r). 
Ɇɨɠɧɨ  ɩɪɨɜɟɫɬɢ  ɫɥɟɞɭɸɳɭɸ  ɤɥɚɫɫɢɮɢɤɚɰɢɸ  ɬɨɱɟɤ,  ɩɪɢɧɚɞɥɟɠɚɳɢɯ  ɤɪɢɜɵɦ 
ɪɟɲɟɧɢɣ (ɫɦ. Ƀɨɫɫ ɢ Ⱦɠɨɡɟɮ, 1980, Ȼɪɢɬɬɨɧ, 1986). 
Ɉɩɪɟɞɟɥɟɧɢɟ 3.7.1. (Ɉɞɧɨɦɟɪɧɵɣ ɫɥɭɱɚɣ.) 
i 
Ɋɟɝɭɥɹɪɧɨɣ  ɬɨɱɤɨɣ (x
0
,r
0
)  ɞɥɹ  f(x, r) = 0  ɧɚɡɵɜɚɟɬɫɹ  ɬɨɱɤɚ,  ɜ  ɤɨɬɨɪɨɣ  ɥɢɛɨ 
f
x
 ≠ 0, ɥɢɛɨ f
r
 ≠ 0. Ɋɟɝɭɥɹɪɧɨɣ ɬɨɱɤɨɣ ɩɨɜɨɪɨɬɚ ɧɚɡɵɜɚɟɬɫɹ ɬɚɤɚɹ ɪɟɝɭɥɹɪɧɚɹ 
ɬɨɱɤɚ, ɜ ɤɨɬɨɪɨɣ r
x
(ɯ) ɢɡɦɟɧɹɟɬ ɡɧɚɤ. ɇɚ ɪɢɫ. 3.11a ɩɪɟɞɫɬɚɜɥɟɧ ɫɥɭɱɚɣ f
x
 = 0 
ɩɪɢ f
r
 ≠ 0 ɜ ɬɨɱɤɟ Ɋ.