Дифференциальные уравнения
• формат pdf
• размер 12.3 МБ
• добавлен 10 декабря 2010 г.
Global Media, 2009. - 124 pages
Introduction to Partial Differential Equations This book is intended as a Partial Differential Equations reference for individuals who already posses a firm understanding of ordinary differential equations and at least have a basic idea of what a partial derivative is. This book is meant to be easily readable to engineers and scientists while still being (almost) interesting enough for mathematics students. Be advised that in depth proofs of such matters as series convergence, uniqueness, and existence will not be given; this fact will appall some and elate others. This book is meant more toward solving or at the very least extracting information out of problems involving partial differential equations.
The first few chapters are built to be especially simple to understand so that, say, the interested engineering undergraduate can benefit; however later on important and more mathematic topics such as vector spaces will be introduced and used. What follows is a quick intro for the uninitiated, with analogies to ordinary differential equations. What is a Partial Differential Equation? Ordinary differential equations arise naturally whenever a rate of change of some entity is known. This may be the rate of increase of a population, the rate of change of velocity, or maybe even the rate at which soldiers die on a battlefield. ODEs describe such changes of discrete entities. Respectively, this may be the capita of a population, the velocity of a particle, or the size of a military force. More than one entity may be described with more than one ODE. For example, cloth is very often simulated in computer graphics as a grid of particles interconnected by springs, with Newton's law applied to each "cloth particle". In three dimensions, this would result in 3 second order ODEs written and solved for each particle. Partial differential equations are analogous to ODEs in that they involve rates of change; however, they differ in that they treat continuous media. For example, the cloth could just as well be considered to be some kind of continuous sheet. This approach would most likely lead to only 3 (maybe 4) partial differential equations, which would represent the entire continuous sheet, instead of a set of ODEs for each particle. This continuum approach is a very different way of looking at things. It may or may not be favorable: in the case of cloth, the resulting PDE system would be too difficult to solve, and so the computer graphics industry goes with a particle based approach (but a prime counterexample is a fluid, which would be represented by a PDE system most of the time).
Смотрите также

## Cain G., Meyer G.H. Separation of Variables for Partial Differential Equations: An Eigenfunction Approach

• формат pdf
• размер 5.96 МБ
• добавлен 29 апреля 2011 г.
CRC, 2005. - 304 Pages. Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. The presentation includes, beyond the usual model problems, a number of realistic applications that...

## Copson E.T. Partial Differential Equations

• формат djvu
• размер 1.91 МБ
• добавлен 10 декабря 2010 г.
Cambridge University Press, 1975. - 292 p. In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its...

## Evans L.C. Partial Differential Equations

• формат djvu
• размер 4.67 МБ
• добавлен 10 декабря 2010 г.
American Mathematical Society, 1998. - 662 pages. This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: 1) representation formulas for solutions, 2) theory for linear partial differential equations, and 3) theory for nonlinear partial differential equations. Included are complete tr...

## Fattorini H.O., Kerber A. The Cauchy Problem

• формат pdf
• размер 5.57 МБ
• добавлен 29 октября 2011 г.
Cаmbridge Univеrsity Prеss, 1984. - 668 pages. This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schr?dinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and...

## Jeffrey A. Applied Partial Differential Equations: An Introduction

• формат pdf
• размер 14.46 МБ
• добавлен 31 марта 2011 г.
Academic Press, 2002. - 394 Pages. This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. Many books deal with partial differential equations, some at an elementary level and others at more advanced levels, so it is necessary that some justification should be given for the publication of another introductory text. With few exceptions, existing texts writt...

## Jost J. Partial Differential Equations

• формат pdf
• размер 13.77 МБ
• добавлен 10 декабря 2010 г.
Second Edition. Springer, 2007. - 356 pages. This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and c...

## Selvadurai A.P.S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation

• формат djvu
• размер 5.34 МБ
• добавлен 09 января 2011 г.
Springer, 2000. - 538 pages. This two-volume work mainly addresses undergraduate and graduate students in the engineering sciences and applied mathematics. Hence it focuses on partial differential equations with a strong emphasis on illustrating important applications in mechanics. The presentation considers the general derivation of partial differential equations and the formulation of consistent boundary and initial conditions required to deve...

## Taylor M.E. Partial Differential Equations III: Nonlinear Equations

• формат pdf
• размер 3.72 МБ
• добавлен 14 января 2011 г.
Springer, 2010. - 715 Pages. The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear d...

## Taylor M.E. Partial Differential Equations: Basic Theory

• формат djvu
• размер 5.69 МБ
• добавлен 09 января 2011 г.
Springer, 1999. - 563 pages. This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic probl...

## Zachmanoglou E.C., Thoe D.W. Introduction to Partial Differential Equations with Applications

• формат djvu
• размер 4.56 МБ
• добавлен 15 октября 2011 г.
Dover, 1987. - 432 pages. This introductory text explores the essentials of partial differential equations applied to common problems in engineering and the physical sciences. It reviews calculus and ordinary differential equations, explores integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory and more. Includes problems and answers.