Математическая физика
  • формат pdf
  • размер 5.57 МБ
  • добавлен 29 октября 2011 г.
Fattorini H.O., Kerber A. The Cauchy Problem
Cаmbridge Univеrsity Prеss, 1984. - 668 pages.

This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schr?dinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.
Читать онлайн
Похожие разделы
Смотрите также

Al’shin A.B., Korpusov M.O., Sveshnikov A.G. Blow-up in Nonlinear Sobolev Type Equations

  • формат pdf
  • размер 2.81 МБ
  • добавлен 23 января 2012 г.
De Gruyter, 2011. - 648 pages. The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain suff...

Ancona V., Vaillant J. (eds.) Hyperbolic Differential Operators and Related Problems

  • формат djvu
  • размер 3.96 МБ
  • добавлен 04 декабря 2010 г.
New York, Basel: Marcel Dekker, 2003. - 374 p. The papers collected in this volume are concerned with hyperbolic problems, or problems the methods of which are related to hyperbolic techniques. T. NISHITANI introduces a notion of nondegenerate characteristic for systems of linear partial differential equations of general order. He shows that nondegenerate characteristics are stable under hyperbolic perturbations, and he proves that if the coeff...

Arnold V.I. Lectures on Partial Differential Equations

  • формат djvu
  • размер 1.69 МБ
  • добавлен 24 августа 2011 г.
Springer, 2004. - 157 Pages. Like all of Vladimir Arnold's books, this book is full of geometric insight. Arnold illustrates every principle with a figure. This book aims to cover the most basic parts of the subject and confines itself largely to the Cauchy and Neumann problems for the classical linear equations of mathematical physics, especially Laplace's equation and the wave equation, although the heat equation and the Korteweg-de Vries equa...

DiBenedetto E. Degenerate Parabolic Equations

  • формат pdf
  • размер 14.33 МБ
  • добавлен 02 ноября 2011 г.
Sрringer, 1993. - 402 pages. Mathematicians have only recently begun to understand the local structure of solutions of degenerate and singular parabolic partial differential equations. The problem originated in the mid '60s with the work of DeGiorgi, Moser, Ladyzenskajia and Uraltzeva. This book will be an account of the developments in this field over the past five years. It evolved out of the 1990-Lipschitz Lectures given by Professor DiBened...

Krylov. Lectures on elliptic and parabolic equations on Sobolev spaces

  • формат djvu
  • размер 10.47 МБ
  • добавлен 03 февраля 2012 г.
2008. American Mathematical Society - 378 pages. This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such as the Neumann or oblique derivative problems are briefly covered. As is n...

Kuttler K. Lecture for Partial Differential Equations

  • формат djvu
  • размер 775.01 КБ
  • добавлен 25 августа 2011 г.
2003. - 151 pages. Review Of Advanced Calculus. Continuous Functions Of One Variable. Exercises. Theorems About Continuous Functions. The Integral. Upper And Lower Sums. Exercises. Functions Of Riemann Integrable Functions. Properties Of The Integral. Fundamental Theorem Of Calculus. Exercises. Multivariable Calculus. Continuous Functions. Sufficient Conditions For Continuity. Exercises. Limits Of A Function. Exercises. The Limit Of A Sequence. S...

Palamodov V. Topics in Mathematical Physics

  • формат pdf
  • размер 2.26 МБ
  • добавлен 16 апреля 2011 г.
2002. - 80 с. Представленная на английском языке работа - курс лекций Паламодова, подробно объясняющая решение уравнений математической физики из 8 частей. Contents Chapter 1: Differential equations of Mathematical Physics Differential equations of elliptic type Diffusion equations Wave equations Systems Nonlinear equations Hamilton-Jacobi theory Relativistic field theory Classification Initial and boundary value problems Inverse problems C...

Partial Differential Equations: Proceedings of the fourth symposium in pure mathematics of the American Mathematical Society held at the University of California, 1960

  • формат pdf
  • размер 3.65 МБ
  • добавлен 14 апреля 2011 г.
Proceedings of Symposia in Pure Mathematics, vol. 4 American Mathematical Society, 1982. - 169 pages. A collection of essays addressed at the meeting of proceedings of the fourth symposium in pure mathematics of the American Mathematical Society held at the University of California, Berkeley, California, April 21-22, 1960. CONTENTS Extensions and Applications of the De Giorgi-Nash Results. Dirichlet's Principle in the Calculus of Variations....

Volpert A.I., Volpert Vit.A., Volpert Vl.A. Traveling Wave Solutions of Parabolic Systems

  • формат djvu
  • размер 1.56 МБ
  • добавлен 13 июня 2011 г.
AMS, 2000. - 455 pages. The theory of traveling wave solutions of parabolic equations is one of the fast developing areas of modern mathematics. The history of this theory begins with the famous mathematical work by Kolmogorov, Petrovskii, and Piskunov and with works in chemical physics, the best known among them by Zel'dovich and Frank-Kamenetskii in combustion theory and by Semenov, who discovered branching chain flames. Traveling wave soluti...

Zachmanoglou E.C., Thoe D.W. Introduction to Partial Differential Equations with Applications

  • формат djvu
  • размер 4.56 МБ
  • добавлен 15 октября 2011 г.
Dover, 1987. - 432 pages. This introductory text explores the essentials of partial differential equations applied to common problems in engineering and the physical sciences. It reviews calculus and ordinary differential equations, explores integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory and more. Includes problems and answers.