
x
τ
µ → ∞
˙x =
1
g(x)
−V
0
(x) + F +
p
2(Q + D) ξ(t)
,
g(x)
g(x) = 1 +
d
dx
τ Q [V
0
(x) − F ]
(D + Q)(1 + µ/τ) + τ V
00
(x)
.
J hvi = h˙xi = J
h˙xi =
L (Q + D)
h
1 − exp
Φ(1)/(Q + D)
i
1
R
0
dx g(x) exp
− Φ(x)/(Q + D)
x+1
R
x
dy g(y) exp
Φ(y)/(Q + D)
.
Φ(x) =
Z
x
0
g(y) [V
0
(y) − F ] dy.
τ → 0 g(x) → 1
h˙xi
τ=0
F 6= 0 µ 0 < τ <
∞
V (x) F = 0
τ F = 0
h˙xi = −
ˆτ
2
Q
A(0)(D + Q)
2
Z
1
0
V
0
(y)V
00
(y)
2
dy,
A(F ) =
1
Z
0
dx
x+1
Z
x
dy exp
[V (y) − V (x) + (x − y)F ]/(D + Q)
.