
II. Transducing and Storing Energy 16. Glycolysis and Gluconeogenesis
16.4. Gluconeogenesis and Glycolysis Are Reciprocally Regulated
Gluconeogenesis and glycolysis are coordinated so that within a cell one pathway is relatively inactive while the other is
highly active. If both sets of reactions were highly active at the same time, the net result would be the hydrolysis of four
nucleotide triphosphates (two ATP plus two GTP) per reaction cycle. Both glycolysis and gluconeogenesis are highly
exergonic under cellular conditions, and so there is no thermodynamic barrier to such simultaneous activity. However,
the amounts and activities of the distinctive enzymes of each pathway are controlled so that both pathways are not highly
active at the same time. The rate of glycolysis is also determined by the concentration of glucose, and the rate of
gluconeogenesis by the concentrations of lactate and other precursors of glucose.
The interconversion of fructose 6-phosphate and fructose 1,6-bisphosphate is stringently controlled (Figure 16.30). As
discussed in Section 16.2.1, AMP stimulates phosphofructokinase, whereas ATP and citrate inhibit it. Fructose 1,6-
bisphosphatase, on the other hand, is inhibited by AMP and activated by citrate. A high level of AMP indicates that the
energy charge is low and signals the need for ATP generation. Conversely, high levels of ATP and citrate indicate that
the energy charge is high and that biosynthetic intermediates are abundant. Under these conditions, glycolysis is nearly
switched off and gluconeogenesis is promoted.
Phosphofructokinase and fructose 1,6-bisphosphatase are also reciprocally controlled by fructose 2,6-bisphosphate in the
liver (Section 16.2.2). The level of F-2,6-BP is low during starvation and high in the fed state, because of the
antagonistic effects of glucagon and insulin on the production and degradation of this signal molecule. Fructose 2,6-
bisphosphate strongly stimulates phosphofructokinase and inhibits fructose 1,6-bisphosphatase. Hence, glycolysis is
accelerated and gluconeogenesis is diminished in the fed state. During starvation, gluconeogenesis predominates because
the level of F-2,6-BP is very low. Glucose formed by the liver under these conditions is essential for the viability of brain
and muscle.
The interconversion of phosphoenolpyruvate and pyruvate also is precisely regulated. Recall that pyruvate kinase is
controlled by allosteric effectors and by phosphorylation (Section 16.2.3). High levels of ATP and alanine, which signal
that the energy charge is high and that building blocks are abundant, inhibit the enzyme in liver. Conversely, pyruvate
carboxylase, which catalyzes the first step in gluconeogenesis from pyruvate, is activated by acetyl CoA and inhibited by
ADP. Likewise, ADP inhibits phosphoenolpyruvate carboxykinase. Hence, gluconeogenesis is favored when the cell is
rich in biosynthetic precursors and ATP.
The amounts and the activities of these essential enzymes also are regulated. The regulators in this case are hormones.
Hormones affect gene expression primarily by changing the rate of transcription, as well as by regulating the degradation
of mRNA. Insulin, which rises subsequent to eating, stimulates the expression of phosphofructokinase, pyruvate kinase,
and the bifunctional enzyme that makes and degrades F-2,6-BP. Glucagon, which rises during starvation, inhibits the
expression of these enzymes and stimulates instead the production of two key gluconeogenic enzymes,
phosphoenolpyruvate carboxykinase and fructose 1,6-bisphosphatase. Transcriptional control in eukaryotes is much
slower than allosteric control; it takes hours or days in contrast with seconds to minutes. The richness and complexity of
hormonal control are graphically displayed by the promoter of the phosphoenolpyruvate carboxykinase gene, which
contains regulatory sequences that respond to insulin, glucagon, glucocorticoids, and thyroid hormone (Figure 16.31).
16.4.1. Substrate Cycles Amplify Metabolic Signals and Produce Heat
A pair of reactions such as the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate and its hydrolysis
back to fructose 6-phosphate is called a substrate cycle. As already mentioned, both reactions are not simultaneously
fully active in most cells, because of reciprocal allosteric controls. However, the results of isotope-labeling studies have
shown that some fructose 6-phosphate is phosphorylated to fructose 1,6-bisphosphate in gluconeogenesis. There also is a
limited degree of cycling in other pairs of opposed irreversible reactions. This cycling was regarded as an imperfection in
metabolic control, and so substrate cycles have sometimes been called futile cycles. Indeed, there are pathological
conditions, such as malignant hyperthermia, in which control is lost and both pathways proceed rapidly with the