7.7 Extensive Forms and Decomposition 333
max−
n
∑
j= 1
c
j
x
j
−
n
∑
j= 1
g
j
v
j
+
K
∑
k=1
p
k
max
m
∑
i=1
n
∑
j= 1
q
ij
y
k
ij
−
n
∑
j= 1
r
j
w
k
j
s. t.
n
∑
j= 1
y
k
ij
≤ 1 , k = 1,...,K , i = 1,...,m ,
x
j
∈{0,1} , v
j
≥ 0 , j = 1,...,n ,
m
∑
i=1
d
k
i
y
k
ij
−e
j
w
k
j
≤ v
j
, k = 1,...,K , j = 1,...,n ,
0 ≤ y
k
ij
≤ x
j
, i = 1,...,m , j = 1...,n ,
k = 1,...,K ,
w
k
j
≤ x
j
, j = 1,...,n , k = 1,...,K ,
w
k
j
∈{0,1} , j = 1,...,n , k = 1,...,K .
Using the extensive form for the binary variables, w
k
j
s transforms it into
max−
n
∑
j= 1
c
j
x
j
−
n
∑
j= 1
g
j
v
j
−
n
∑
j= 1
K
∑
k=1
p
k
r
j
w
k
j
+
K
∑
k=1
p
k
max
n
∑
i=1
n
∑
j= 1
q
ij
y
k
ij
s. t. x
j
∈{0, 1} , v
j
≥ 0 , j = 1,...,n ,
n
∑
j= 1
y
k
ij
≤ 1 , i = 1,...,m , k = 1,...,K ,
w
k
j
≤ x
j
,
m
∑
i=1
d
k
i
y
k
ij
≤ v
j
+ e
j
w
k
j
, j = 1,...,n ,
k = 1,...,K ,
w
k
j
∈{0, 1} , 0 ≤ y
k
ij
≤ x
j
, i = 1,...,m ,
j = 1,...,n , k = 1,...,K .
Thus, at the price of expanding the first-stage program, one obtains a second stage
that enjoys the good properties of continuous programs.
When the stochastic programs with mixed-integer second-stage cannot be effi-
ciently decomposed as above, then it can be solved through a scenario decompo-
sition approach. In this method, the nonanticipativity constraints are subjected to
Lagrangian relaxation to create mixed-integer programs which are separable in the
realizations of the random vector. Details on the method can be found in Carøe and
Schultz [1999].