452 References
18. E.M.L. Beale, “On minimizing a convex function subject to linear inequalities,” J. Royal
Statistical Society, Series B 17 (1955) pp. 173–184.
19. E.M.L. Beale, “The use of quadratic programming in stochastic linear programming,” Rand
Report P-2404-1, The Rand Corporation (1961).
20. E.M.L. Beale, J.J.H. Forrest, and C.J. Taylor, “Multi-time-period stochastic programming”
in: M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New York, NY, 1980)
pp. 387–402.
21. E.M.L. Beale, G.B. Dantzig, and R.D. Watson, “A first order approach to a class of
multi-time-period stochastic programming problems,” Mathematical Programming Study 27
(1986) pp. 103–117.
22. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, NJ, 1957).
23. Ben-Tal, A., Boyd, S., Nemirovski, A., Extending the Scope of Robust Optimization: Com-
prehensive Robust Counterparts of Uncertain Problems, Mathematical Programming 107:1-2
(2006), 63–89.
24. Ben-Tal, A. and Arkadi Nemirovski, A. (2002). Robust optimizationmethodology and appli-
cations, Mathematical Programming, Series B 92, 453–480.
25. A. Ben-Tal and M. Teboulle, “Expected utility, penalty functions, and duality in stochastic
nonlinear programming,” Management Science 32 (1986) pp. 1445–1466.
26. J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,”
Numerische Mathematik 4 (1962) pp. 238–252.
27. B. Bereanu, “Some numerical methods in stochastic linear programming under risk and un-
certainty” in: M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New York,
NY, 1980) pp. 169–205.
28. J.O. Berger, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, New York,
NY, 1985).
29. O. Berman, R.C. Larson, and S.S. Chiu, “Optimal server location on a network operating as
a M/G/1 queue,” Operations Research 33 (1985) pp. 746–770.
30. D.P. Bertsekas, Dynamic Programming and Optimal Control, Volume II, Third Edition
(Athena Scientific, Boston, 2007).
31. D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, Boston,
1995).
32. D. Bertsimas, D.A. Iancu, and P.A. Parrilo, “Optimality of affine policies in multistage robust
optimization,” Mathematics of Operations Research 35 (2010) pp. 363–394.
33. D. Bertsimas, P. Jaillet, and A. Odoni, “A priori optimization,” Operations Research 38
(1990) pp. 1019–1033.
34. D. Bertsimas, K. Natarajan, and C-P. Teo, “Probabilistic combinatorial optimization: Mo-
ments, semidefinite programming and asymptotic bounds,” SIAM J. of Optimization 15
(2004) pp. 185-209.
35. D. Bertsimas and I. Popescu, “ Optimal inequalities in probability: A convex programming
approach,” SIAM Journal of Optimization, 15 (2004) pp. 780–804.
36. D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization problems,”
Mathematical Programming 107 (2006) pp. 5–36.
37. D. Bienstock and J.F. Shapiro, “Optimizing resource acquisition decisions by stochastic pro-
gramming,” Management Science 34 (1988) pp. 215–229.
38. P. Billingsley, Convergence of Probability Measures (John Wiley, Inc., New York, NY, 1968).
39. J.R. Birge, “Solution Methods for Stochastic Dynamic Linear Programs,” Ph.D. Dissertation
and Technical Report SOL 80-29, Systems Optimization Laboratory, Stanford University
(Stanford, CA, 1980).
40. J.R. Birge, “The value of the stochastic solution in stochastic linear programs with fixed
recourse,” Mathematical Programming 24 (1982) pp. 314–325.
41. J.R. Birge, “Using sequential approximations in the L-shaped and generalized programming
algorithms for stochastic linear programs,” Technical Report 83-12, Department of Industrial
and Operations Engineering, University of Michigan (Ann Arbor, MI, 1983); available at
http://hdl.handle.net/2027.42/3642.