References 455
87. I.C. Choi, C.L. Monma, and D.F. Shanno, “Further development of a primal-dual interior
point method,” ORSA Journal on Computing 2 (1990) pp. 304–311.
88. K. L. Chung, A Course in Probability Theory (Academic Press, New York, NY, 1974).
89. V. Chv´atal, Linear Programming (Freeman, New York/San Francisco, CA, 1980).
90. T. Cipra, “Moment problem with given covariance structure in stochastic programming,”
Ekonom.-Mat. Obzor 21 (1985) pp. 66–77.
91. T. Cipra, “Stochastic programming with random processes,” Annals of Operations Research
30 (1991) pp. 95–105.
92. F. Clarke, Optimization and Nonsmooth Analysis (John Wiley, Inc., New York, NY, 1983).
93. A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust-Region Methods (SIAM/MPS, Philadelphia,
PA, 2000).
94. J. Cox and S. Ross, “The valuation of options for alternative stochastic processing,” Journal
of Financial Economics 3 (1976) pp. 145–166.
95. L. Dai, C. Chen, and J.R. Birge, “Convergence Properties of Two-Stage Stochastic Program-
ming,” Journal Of Optimization Theory And Applications 106 (2000) pp. 489-509.
96. G.B. Dantzig, “Linear programming under uncertainty,” Management Science 1 (1955) pp.
197–206.
97. G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton,
NJ, 1963).
98. G.B. Dantzig and P. Glynn, “Parallel processors for planning under uncertainty,” Annals of
Operations Research 22 (1990) pp. 1–21.
99. G.B. Dantzig and G. Infanger, “Large-scale stochastic linear programs—Importance sam-
pling and Benders decomposition” in: C. Brezinski and U. Kulisch, Eds., Computational and
applied mathematics, I (Dublin, 1991) (North-Holland, Amsterdam, 1991) pp. 111–120.
100. G.B. Dantzig and A. Madansky, “On the solution of two–stage linear programs under un-
certainty,” Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, (University of California Press, Berkeley, CA, 1961).
101. G.B. Dantzig and A. Wald, “On the fundamental lemma of Neyman and Pearson,” The Annals
of Mathematical Statistics 22 (1951) pp. 87–93.
102. G.B. Dantzig and P. Wolfe, “The decomposition principle for linear programs,” Operations
Research 8 (1960) pp. 101–111.
103. D. Dawson and A. Sankoff, “An inequality for probabilities,” Proceedings of the American
Mathematical Society 18 (1967) pp. 504–507.
104. I. De´ak, “Three-digit accurate multiple normal probabilities,” Numerische Mathematik 35
(1980) pp. 369–380.
105. I. De´ak, “Multidimensional integration and stochastic programming,” in: Y. Ermoliev and
R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-Verlag, Berlin,
1988) pp. 187–200.
106. I. De´ak, Random Number Generators and Simulation (Akad´emiai Kiad´o, Budapest, 1990).
107. D.P. de Farias and B. Van Roy, “ On constraint sampling in the linear programming approach
to approximate dynamic programming,”Mathematics of Operations Research 29 (2004) pp.
462-478.
108. M.H. DeGroot, Optimal Statistical Decisions (McGraw-Hill, New York, NY, 1970).
109. M.A.H. Dempster, “Introduction to Stochastic Programming” in: M.A.H. Dempster, Ed.,
Stochastic Programming (Academic Press, New York, NY, 1980) pp. 3–59.
110. M.A.H. Dempster, “The expected value of perfect information in the optimal evolution of
stochastic problems” in: M. Arato, D. Vermes, and A.V. Balakrishnan, Eds., Stochastic Dif-
ferential Systems (Lecture Notes in Information and Control, Vol. 36, 1981) pp. 25–40.
111. M.A.H. Dempster, “On stochastic programming II: dynamic problems under risk,” Stochas-
tics 25 (1988) pp. 15–42.
112. M.A.H. Dempster, “Sequential importance sampling algorithms for dynamic stochastic pro-
gramming,” Jounral of Mathematical Sciences 133 (2006), pp. 1422–1444.
113. M.A.H. Dempster and A. Papagaki-Papoulias, “Computational experience with an approxi-
mate method for the distribution problem” in: M.A.H. Dempster, Ed., Stochastic Program-
ming (Academic Press, New York, NY, 1980) pp. 223–243.