
f ∈F
in
(A, B). Imf = {f(a
1
),...,f(a
n
)}
n B
Imf n B
m
n
A
= {b
1
,...,b
n
} n
B n!
A
. f
σ
, σ ∈ Sym
n
,
f
σ
(a
i
)=b
σ(i)
,
|F
in
(A, B)| =
m
n
n!=m(m − 1) ···(m − n +1).
f ∈F
on
(A, B). F
i
= {f ∈F(A, B) | f(a) = b
i
, ∀a ∈ A}
b
i
. f
A m − 1 B \{b
i
} :
f ∈F
i
⇒ f ∈F(A, B \ b
i
), |B \{b
i
}| = m − 1.
|F
i
| =(m − 1)
n
,i=1,...,n.
f ∈F
i
1
∩···∩F
i
s
f ∈F(A, B \{b
i
1
,...,b
i
s
}
|F
i
1
∩···∩F
i
s
| =(m − s)
n
.
(i
1
,...,i
s
) 1 ≤ i
1
< ···<i
s
≤ m
m
s
|F
1
∪···∪F
m
| =
m
s=1
(−1)
s+1
1≤i
1
<···<i
s
≤m
|F
i
1
∩···∩F
i
s
| =
m
s=1
(−1)
s+1
m
s
(m − s)
n
.
F
1
∪···∪F
m
,
F(A, B).
|F
on
(A, B)| = |F
1
∪···∪F
m
| = |F(A, B)|−|F
1
∪···∪F
m
| =
m
n
−
m
s=1
(−1)
s+1
m
s
(m − s)
n
=
m
0
(m − 0)
n
+
m
s=1
(−1)
s
m
s
(m − s)
n
=
m
s=0
(−1)
s
m
s
(m − s)
n
.
m
s=0
(−1)
s
m
s
(m − s)
m
=0, m<n.
n>
m.
|A| = |B| = n f ∈F(A, B).