
¯
1={1, 6, 11, ···, −4, −9, ···},
¯
2={2, 7, 17, ···, −3, −8, ···},
¯
3={3, 8, 13, ···, −2, −7, ···},
¯
4={4, 9, 14, ···, −1, −6, −11, ···}.
ax ≡ b(mod m)
m
d = (a, m). ax ≡ b(mod m)
d|b. d
ax ≡ b(mod m) ax+my = b
m
a
1
x ≡ b
1
(mod m
1
),
a
2
x ≡ b
2
(mod m
2
),
a
n
x ≡ b
n
(mod m
n
)
x ≡ b
1
(mod m
1
),
x ≡ b
2
(mod m
2
),
x ≡ b
n
(mod m
n
).
x ≡ b
1
(mod m
1
),
x ≡ b
2
(mod m
2
).
x = b
1
+m
1
t.
m
1
t = b
2
− b
1
(mod m
2
).
(m
1
,m
2
)|b
2
− b
1
.
m
2
/ (m
1
,m
2
):
t ≡ t
0
(mod
m
2
(m
1
,m
2
)
).
x = b
1
+ m
1
(t
0
+
m
2
(m
1
,m
2
)
t)=b
0
+
m
1
m
2
(m
1
,m
2
)
t = b
0
+ (m
1
,m
2
)t
(m
1
,m
2
).
(m
1
,...,m
n
).