
3S[a, b, c] S[d, e]+3S[b, c, d] S[e, a]+3S[c, d, e] S[a, b]
+3S[d, e, a] S[b, c]+3S[e, a, b] S[c, d]
−S[a, b, d] S[c, e] − S[b, c, e] S[d, a] − S[c, d, a] S[e, b]
−S[d, e, b] S[a, c] −S[e, a, c] S[b, d]
=10S[a, b, c, d, e],
S[a, b, c, d, e]=(a − b)(b − c)(c − d)(d − e)(e − a).
A F
k
(A, A)
k A ×···×A → A.
F
k
(A, A) ×F
l
(A, A) →F
k+l
(A, A)
ψφ(a
1
,...,a
k+l
)=
σ∈Sym
k,l−1
sgn σ ψ(a
σ(1)
,...,a
σ(k)
)φ(a
σ(k+1)
,...,a
σ(k+l−1)
,a
k+l
),
Sym
k,l
= {σ ∈ Sym
k+l
|σ(1) <...<σ(k),σ(k +1)< ···<σ(k + l)}.
s
k
(a
1
,...,a
k
)=(a
1
−a
2
)(a
2
−a
3
) ···(a
k−1
−a
k
)(a
k
− a
1
).
s
2i
s
l
=2
[l/2] + i − 1
i
s
2i+l
,
s
2i+1
s
l
=0, ∀0 <i,1 <l.
2k+1
i=1
(−1)
i
s
2k
(a
1
,..., ˆa
i
,...,a
2k+1
)=−2(a
1
− a
2
)(a
2
− a
3
) ···(a
2k
− a
2k+1
),
2k+1
i=1
(−1)
i
a
i
s
2k
(a
1
,..., ˆa
i
,...,a
2k+1
)=−(a
1
−a
2
)(a
2
− a
3
) ···(a
2k
− a
2k+1
)(a
2k+1
+ a
1
),