
P
1
Q
2
−P
2
Q
1
= 153 × 33 − 631 × 8=1,
P
2
Q
3
−P
3
Q
2
= 631 × 41 − 784 × 33 = −1,
P
3
Q
4
− P
4
Q
3
= 784 × 74 − 1415 × 41 = 1,
P
4
Q
5
− P
5
Q
4
= 1415 × 3614 − 3614 × 74 = −1.
(P
s
,Q
s
)=1
d = (P
s
,Q
s
), d
(−1)
s
, d =1.
(19, 1) = 1, (153, 8) = 1, (631, 33) = 1, (784, 41) =
1,
(1415, 74) = 1, (3614, 189) = 1.
|δ
s
− δ
s−1
| =
1
Q
s−1
Q
s
.
δ
s
− δ
s−1
=
P
s
Q
s−1
− P
s−1
Q
s
Q
s−1
Q
s
=
(−1)
s−1
Q
s−1
Q
s
.
δ
1
>δ
3
>δ
5
> ···>δ
2p+1
> ···>a/b
δ
0
<δ
2
<δ
4
< ···<δ
2p
< ···<a/b
δ
1
= 153/8 >δ
3
= 784/41 >δ
5
= 3614/184 >a/b, δ
0
=19<δ
2
=
631/33 <δ
4
= 1415/74 <a/b
105
38
245
83
37
81
2, 71828 3, 14159.
[2, 3, 1, 4]
[2, 1, 1, 2, 1, 6, 2, 5]
1+
1
2+
1
3+
1
4+
1
5