
366 CHAPTER 7 DC Machines
the circular arcs. The end connections at the back of the armature are shown dashed
for the two coils in slots 1 and 7, and the connections of these coils to adjacent
commutator segments are shown by the heavy arcs. All coils are identical. The back
end connections of the other coils have been omitted to avoid complicating the figure,
but they can easily be traced by remembering that each coil has one side in the top of
a slot and the other side in the bottom of the diametrically-opposite slot.
In Fig. 7.7a the brushes are in contact with commutator segments 1 and 7. Current
entering the fight-hand brush divides equally between two parallel paths through the
winding. The first path leads to the inner coil side in slot 1 and finally ends at the brush
on segment 7. The second path leads to the outer coil side in slot 6 and also finally ends
at the brush on segment 7. The current directions in Fig. 7.7a can readily be verified
by tracing these two paths. They are the same as in Fig. 4.22. The effect is identical
to that of a coil wrapped around the armature with its magnetic axis vertical, and a
clockwise magnetic torque is exerted on the armature, tending to align its magnetic
field with that of the field winding.
Now suppose the machine is acting as a generator driven in the counterclockwise
direction by an applied mechanical torque. Figure 7.7b shows the situation after the
armature has rotated through the angle subtended by half a commutator segment. The
right-hand brush is now in contact with both segments 1 and 2, and the left-hand
brush is in contact with both segments 7 and 8. The coils in slots 1 and 7 are now
short-circuited by the brushes. The currents in the other coils are shown by the dots
and crosses, and they produce a magnetic field whose axis again is vertical.
After further rotation, the brushes will be in contact with segments 2 and 8, and
slots 1 and 7 will have rotated into the positions which were previously occupied by
slots 12 and 6 in Fig. 7.7a. The current directions will be similar to those of Fig. 7.7a
except that the currents in the coils in slots 1 and 7 will have reversed. The magnetic
axis of the armature is still vertical.
During the time when the brushes are simultaneously in contact with two ad-
jacent commutator segments, the coils connected to these segments are temporarily
removed from the main circuit comprising the armature winding, short-circuited by
the brushes, and the currents in them are reversed. Ideally, the current in the coils
being commutated should reverse linearly with time, a condition referred to as
linear
commutation.
Serious departure from linear commutation will result in sparking at
the brushes. Means for obtaining sparkless commutation are discussed in Section 7.9.
With linear commutation the waveform of the current in any coil as a function of time
is trapezoidal, as shown in Fig. 7.8.
Commutation
,~,
l
i |
Coil current
Figure
7.8 Waveform of current in an armature coil
with linear commutation.