
7.6 Analysis of Steady-State Performance 379
7.6
ANALYSIS OF STEADY-STATE
PERFORMANCE
Although exactly the same principles apply to the analysis of a dc machine acting as
a generator as to one acting as a motor, the general nature of the problems ordinarily
encountered is somewhat different for the two methods of operation. For a generator,
the speed is usually fixed by the prime mover, and problems often encountered are
to determine the terminal voltage corresponding to a specified load and excitation or
to find the excitation required for a specified load and terminal voltage. For a motor,
however, problems frequently encountered are to determine the speed corresponding
to a specific load and excitation or to find the excitation required for specified load and
speed conditions; terminal voltage is often fixed at the value of the available source.
The routine techniques of applying the common basic principles therefore differ to
the extent that the problems differ.
7.6.1 Generator Analysis
Since the main-field current is independent of the generator voltage, separately-excited
generators are the simplest to analyze. For a given load, the equivalent main-field
excitation is given by Eq. 7.21 and the associated armature-generated voltage Ea
is determined by the appropriate magnetization curve. This voltage, together with
Eq. 7.17 or 7.18, fixes the terminal voltage.
Shunt-excited generators will be found to self-excite under properly chosen oper-
ating conditions. Under these conditions, the generated voltage will build up sponta-
neously (typically initiated by the presence of a small amount of residual magnetism
in the field structure) to a value ultimately limited by magnetic saturation. In self-
excited generators, the shunt-field excitation depends on the terminal voltage and the
series-field excitation depends on the armature current. Dependence of shunt-field
current on terminal voltage can be incorporated graphically in an analysis by drawing
the
field-resistance line,
the line 0a in Fig. 7.14, on the magnetization curve. The
field-resistance line 0a is simply a graphical representation of Ohm's law applied
to the shunt field. It is the locus of the terminal voltage versus shunt-field-current
operating point. Thus, the line 0a is drawn for Rf -- 50 ~ and hence passes through
the origin and the point (1.0 A, 50 V).
The tendency of a shunt-connected generator to self-excite can be seen by exam-
ining the buildup of voltage for an unloaded shunt generator. When the field circuit
is closed, the small voltage from residual magnetism (the 6-V intercept of the mag-
netization curve, Fig. 7.14) causes a small field current. If the flux produced by the
resulting ampere-turns adds to the residual flux, progressively greater voltages and
field currents are obtained. If the field ampere-turns opposes the residual magnetism,
the shunt-field terminals must be reversed to obtain buildup.
This process can be seen with the aid of Fig. 7.15. In Fig. 7.15, the generated
voltage ea is shown in series with the armature inductance La and resistance Ra. The
shunt-field winding, shown connected across the armature terminals, is represented
by its inductance Lf and resistance Rf. Recognizing that since there is no load current