
8.3
Current Waveforms for Torque Production 429
derivatives) significantly affect the current waveforms that can be achieved for a given
applied voltage.
In general, the problem becomes more severe as the rotor speed is increased.
Consideration of Example 8.3 shows, for a given applied voltage, (1) that as the
speed is increased, the current will take a larger fraction of the available time during
which
dL(Om)/dOm
is positive to achieve a given level and (2) that the steady-state
current which can be achieved is progressively lowered. One common method for
maximizing the available torque is to apply the phase voltage somewhat in advance
of the time when
dL(Om)/dOm
begins to increase. This gives the current time to build
up to a significant level before torque production begins.
Yet a more significant difficulty (also illustrated in Example 8.3) is that just as the
currents require a significant amount of time to increase at the beginning of a turn-on
cycle, they also require time to decrease at the end. As a result, if the phase excitation
is removed at or near the end of the positive
dL
(0m)/dOm period, it is highly likely that
there will be phase current remaining as
dL(Om)/dOm
becomes negative, so there will
be a period of negative torque production, reducing the effective torque-producing
capability of the VRM.
One way to avoid such negative torque production would be to turn off the phase
excitation sufficiently early in the cycle that the current will have decayed essentially
to zero by the time that
dL(Om)/dOm
becomes negative. However, there is clearly a
point of diminishing returns, because turning off the phase current while dL (0m)/dOm
is positive also reduces positive torque production. As a result, it is often necessary
to accept a certain amount of negative torque (to get the required positive torque)
and to compensate for it by the production of additional positive torque from another
phase.
Another possibility is illustrated in Fig. 8.12. Figure 8.12a shows the cross-
sectional view of a 4/2 VRM similar to that of Fig. 8.3 with the exception that the
rotor pole angle has been increased from 60 ° to 75 °, with the result that the rotor
pole overhangs that of the stator by 15 °. As can be seen from Fig. 8.12b, this results
in a region of constant inductance separating the positive and negative
dL(Om)/dOm
regions, which in turn provides additional time for the phase current to be turned off
before the region of negative torque production is reached.
Although Fig. 8.12 shows an example with 15 ° of rotor overhang, in any particular
design the amount of overhang would be determined as part of the overall design
process and would depend on such issues as the amount of time required for the
phase current to decay and the operating speed of the VRM. Also included in this
design process must be recognition that the use of wider rotor poles will result in a
larger value of
Lmin,
which itself tends to reduce torque production (see the discussion
of Eq. 8.8) and to increase the time for current buildup.
Under conditions of constant-speed operation, it is often desirable to achieve
constant torque independent of rotor position. Such operation will minimize pulsating
torques which may cause excessive noise and vibration and perhaps ultimately lead to
component failure due to material fatigue. This means that as the torque production of
one phase begins to decrease, that of another phase must increase to compensate. As
can be seen from torque waveforms such as those found in Fig. 8.11, this represents a