
420
CHAPTER 8 Variable-Reluctance Machines and Stepping Motors
Consider next that the excitation on phase 1 is removed and phase 2 is excited. At this
point, the stator flux wave has rotated 45 ° in the clockwise direction. Similarly, as the excitation
on phase 2 is removed and phase 3 is excited, the stator flux wave will move an additional 45 °
clockwise. Thus the angular velocity Ogs of the stator flux wave can be calculated quite simply
as zr/4 rad (45 °) divided by To~4 sec, or w~ = re/To rad/sec.
Note, however, that this is not the angular velocity of the rotor itself. As the phase-1
excitation is removed and phase 2 is excited, the rotor will move in such a fashion as to
maximize the phase-2 flux linkages. In this case, Fig. 8.7 shows that the rotor will move 15 °
counterclockwise since the nearest rotor poles to phase 2 are actually 15 ° ahead of the phase-2
poles. Thus the angular velocity of the rotor can be calculated as -Jr/12 rad (15 °, with the minus
sign indicating counterclockwise rotation) divided by To~4 see, or
09 m =
-zr/(3T0) rad/sec.
In this case, the rotor travels at one-third the angular velocity of the stator excitation and
in the opposite direction!
)ractice Problem 8.:
Repeat the calculation of Example 8.2 for the case of a four-phase, 8/10 VRM.
Solution
09 m "-- n / (5 T 0)
rad/sec
Example 8.2 illustrates the complex relationship that can exist between the exci-
tation frequency of a VRM and the "synchronous" rotor frequency. This relationship
is directly analogous to that between two mechanical gears for which the choice of
different gear shapes and configurations gives rise to a wide range of speed ratios. It
is difficult to derive a single rule which will describe this relationship for the immense
variety of VRM configurations which can be envisioned. It is, however, a fairly simple
matter to follow a procedure similar to that shown in Example 8.2 to investigate any
particular configuration of interest.
Further variations on VRM configurations are possible if the main stator and rotor
poles are subdivided by the addition of individual teeth (which can be thought of as a
set of small poles excited simultaneously by a single winding). The basic concept is
illustrated in Fig. 8.8, which shows a schematic view of three poles of a three-phase
VRM with a total of six main stator poles. Such a machine, with the stator and rotor
poles subdivided into teeth, is known as a castleated VRM, the name resulting from
the fact that the stator teeth appear much like the towers of a medieval castle.
In Fig. 8.8 each stator pole has been divided into four subpoles by the addition
3 o (indicated by the angle/3 in the figure), with a slot of the
of four teeth of width 6 7
same width between each tooth. The same tooth/slot spacing is chosen for the rotor,
resulting in a total of 28 teeth on the rotor. Notice that this number of rotor teeth and the
corresponding value of/3 were chosen so that when the rotor teeth are aligned with
those of the phase- 1 stator pole, they are not aligned with those of phases 2 and 3. In this
fashion, successive excitation of the stator phases will result in a rotation of the rotor.
Castleation further complicates the relationship between the rotor speed and the
frequency and sequence of the stator-winding excitation. For example, from Fig. 8.8