
408 CHAPTER 8 Variable-Reluctance Machines and Stepping Motors
8.1 BASICS OF VRM ANALYSIS
Common variable-reluctance machines can be categorized into two types: singly-
salient and doubly-salient. In both cases, their most noticeable features are that there
are no windings or permanent magnets on their rotors and that their only source of
excitation consists of stator windings. This can be a significant feature because it
means that all the resistive winding losses in the VRM occur on the stator. Because
the stator can typically be cooled much more effectively and easily than the rotor, the
result is often a smaller motor for a given rating and frame size.
As is discussed in Chapter 3, to produce torque, VRMs must be designed such
that the stator-winding inductances vary with the position of the rotor. Figure 8.1a
shows a cross-sectional view of a
singly-salient VRM,
which can be seen to consist of
a nonsalient stator and a two-pole salient rotor, both constructed of high-permeability
magnetic material. In the figure, a two-phase stator winding is shown although any
number of phases are possible.
Figure 8.2a shows the form of the variation of the stator inductances as a function
of rotor angle 0m for a singly-salient VRM of the form of Fig. 8.1 a. Notice that the
inductance of each stator phase winding varies with rotor position such that the induc-
tance is maximum when the rotor axis is aligned with the magnetic axis of that phase
and minimum when the two axes are perpendicular. The figure also shows that the
mutual inductance between the phase windings is zero when the rotor is aligned with
the magnetic axis of either phase but otherwise varies periodically with rotor position.
Figure 8. lb shows the cross-sectional view of a two-phase
doubly-salient VRM
in which both the rotor and stator have salient poles. In this machine, the stator has
four poles, each with a winding. However, the windings on opposite poles are of the
same phase; they may be connected either in series or in parallel. Thus this machine
is quite similar to that of Fig. 8.1a in that there is a two-phase stator winding and
a two-pole salient rotor. Similarly, the phase inductance of this configuration varies
from a maximum value when the rotor axis is aligned with the axis of that phase to a
minimum when they are perpendicular.
Unlike the singly-salient machine of Fig. 8.1 a, under the assumption of negligible
iron reluctance the mutual inductances between the phases of the doubly-salient VRM
of Fig. 8.1 b will be zero, with the exception of a small, essentially-constant component
associated with leakage flux. In addition, the saliency of the stator enhances the dif-
ference between the maximum and minimum inductances, which in turn enhances the
torque-producing characteristics of the doubly-salient machine. Figure 8.2b shows the
form of the variation of the phase inductances for the doubly-salient VRM of Fig. 8. lb.
The relationship between flux linkage and current for the singly-salient VRM is
of the form
~.2 = Llz(0m) L22(0m) i2 (8.1)
Here L 11 (0m) and L 22 (0m) are the self-inductances of phases 1 and 2, respectively,
and L l2(0m) is the mutual inductances. Note that, by symmetry
L22(0m) ~- L II (0m -
90 °) (8.2)