
from Possession Island (Crozet Archipelago), southern Indian
Ocean. Journal of Geophysical Research, 106: 1961–1971.
Carlut, J., and Courtillot, V., 1998. How complex is the time-averaged
geomagnetic field over the past 5 million years? Geophysical Jour-
nal International, 134: 527–544.
Carlut, J., Quidelleur, X., Courtillot, V., and Boudon, G., 2000. Paleo-
magnetic directions and K-Ar dating of 0 to 1 Ma lava flows from
La Guadeloupe Island (French West Indies): implications for time-
averaged field models. Journal of Geophysical Research, 105:
835–849.
Coe, R.S., 1979. The effect of shape anisotropy on TRM direction.
Geophysical Journal of the Royal Astronomical Society, 56:
369–383.
Cook, P.J., and McElhinny, M.W., 1979. A reevaluation of the spatial
and temporal distribution of sedimentary phosphate deposits in the
light of plate tectonics. Economic Geology, 74: 315–330.
Cox, A., and Doell, R.R., 1960. Review of paleomagnetism. Geologi-
cal Society of America Bulletin, 71: 645–768.
Creer, K.M., 1983. Computer synthesis of geomagnetic palaeosecular
variation. Nature, 304: 695–699.
Evans, M.E., 1976. Test of the nondipolar nature of the geomagnetic
field throughout Phanerozoic time. Nature, 262: 676–677.
Hatakeyama, T., and Kono, M., 2002. Geomagnetic field models for
the last 5 Myr time-averaged field and secular variation. Physics
of the Earth and Planetary Interiors, 133: 181–201.
Herrero-Bervera, E., and Valet, J-P., 2002. Paleomagnetic secular
variation of the Honolulu Volcanic Series, (33–700 ka), Oahu
(Hawaii). Physics of the Earth and Planetary Interiors, 133:
83–97.
Hospers, J., 1954. Rock magnetism and polar wandering. Nature, 173:
1183.
Irving, E., 1956. Palaeomagnetic and palaeoclimatological aspects of
polar wandering. Geofisica Pura et Applicata, 33:23–41.
Irving, E., 1964. Paleomagnetism and Its Application to Geological
and Geophysical Problems. New York: John Wiley.
Johnson, C.L., and Constable, C.G., 1995. The time-averaged geomag-
netic field as recorded in lava flows over the past 5 Myr. Geophy-
sical Journal International, 122: 489–519.
Johnson, C.L., and Constable, C.G., 1997. The time-averaged geomag-
netic field: global and regional biases for 0–5 Ma. Geophysical
Journal International, 131: 643–666.
Johnson, C.L., Wijbrans, J.R., Constable, C.G., Gee, J., Staudigal, H.,
Tauxe, L., Forjaz, V-H., and Salguiero, M., 1998.
40
Ar-
39
Ar ages
and paleomagnetism of San Miguel lavas, Azores. Earth and
Planetary Science Letters, 160: 637–649.
Kelly, P., and Gubbins, D., 1997. The geomagnetic field over the past
5 million years. Geophysical Journal International, 128: 315–330.
Kent, D.V., and Smethurst, M.A., 1998. Shallow bias of paleomagnetic
inclinations in the Paleozoic and Precambrian. Earth and Planetary
Science Letters, 160: 391–402.
King, R.F., and Rees, A.I., 1966. Detrital magnetism in sediments: an
examination of some theoretical models. Journal of Geophysical
Research, 71: 561–571.
Laj, C., Guillou, H., Szeremeta, N., and Coe, R.S., 1999. Geomagnetic
secular variation at Hawaii around 3 Ma from a sequence of 107
lavas at Kaena Point (Oahu). Earth and Planetary Science Letters,
170: 365–376.
McElhinny, M.W., 1973. Palaeomagnetism and Plate Tectonics.
Cambridge: Cambridge University Press.
McElhinny, M.W., 2004. The geocentric axial dipole hypothesis: a
least squares perspective. In Channell, J.E.T., Kent, D.V., and
Lowrie, W. (eds.), Timescales of the Internal Geomagnetic Field.
American Geophysical Union Monograph, 145:1–12.
McElhinny, M.W., and Brock, A., 1978. A new palaeomagnetic result
from East Africa and estimates of the Mesozoic palaeoradius.
Earth and Planetary Science Letters, 27: 321–328.
McElhinny, M.W., and McFadden, P.L., 1997. Palaeosecular variation
over the past 5 Myr based on a new generalized database. Geophy-
sical Journal International, 131: 240–252.
McElhinny, M.W., and McFadden, P.L., 2000. Paleomagnetism: Con-
tinents and Oceans. San Diego, CA: Academic Press.
McElhinny, M.W., McFadden, P.L., and Merrill, R.T., 1996. The time-
averaged geomagnetic field 0–5 Ma. Journal of Geophysical
Research, 101: 25007–25027.
McFadden, P.L., 2004. Is 600 Myr long enough for the random palaeo-
geographic test of the geomagnetic axial dipole assumption? Geo-
physical Journal International, 158: 443–445.
Meert, J.G., Tamrat, E., and Spearman, J., 2003. Nondipole fields and
inclination bias: insights from a random walk analysis. Earth and
Planetary Science Letters
, 214: 395–408.
Mejia, V., Barendregt, R.W., and Opdyke, N., 2002. Paleosecular
variation of Brunhes age lava flows from British Columbia. Geo-
chemistry, Geophysics, Geosystems, 3(12): 8801, doi:10.1029/
2002GC000353.
Mejia, V., Opdyke, N.D., Vilas, J.F., Singer, B.S., and Stoner, J.S.,
2004. Plio-Pleistocene time-averaged field in southern Patagonia
recorded in lava flows. Geochemistry, Geophysics, Geosystems,
5(3): Q03H08, doi:10.1029/2003GC000633.
Merrill, R.T., and McElhinny, M.W., 1977. Anomalies in the time-
averaged paleomagnetic field and their implications for the
lower mantle. Reviews of Geophysics and Space Physics, 15:
309–323.
Merrill, R.T., and McElhinny, M.W., 1983. The Earth’s Magnetic
Field: Its History, Origin and Planetary Perspective. London:
Academic Press.
Merrill, R.T., McFadden, P.L., and McElhinny, M.W., 1990. Paleo-
magnetic tomography of the core-mantle boundary. Physics of the
Earth and Planetary Interiors, 64:87–101.
Miki, M., Inokuchi, H., Yamaguchi, S., Matsuda, J., Nagao, K.,
Isazaki, N., and Yaskawa, K., 1998. Geomagnetic secular variation
in Easter Island, southeast Pacific. Physics of the Earth and Plane-
tary Interiors, 106:93–101.
Morinaga, H., Matsumoto, T., Okimura, Y., and Matsuda, T., 2000.
Paleomagnetism of Pliocene to Pleistocene lava flows in the north-
ern part of Hyogo prefecture, northwest Japan and Brunhes chron
paleosecular variation in Japan. Earth, Planets and Space, 52:
437–443.
Opdyke, N.D., and Henry, K.W., 1969. A test of the dipole hypothesis.
Earth and Planetary Science Letters, 6: 139–151.
Opdyke, N.D., and Musgrave, R., 2004. Paleomagnetic results from
the Newer Volcanics of Victoria: contribution to the time averaged
field initiative. Geochemistry, Geophysics, Geosystems, 5(3):
Q03H09, doi:10.1029/2003GC000632.
Perrin, M., and Shcherbakov, V., 1997. Paleointensity of the Earth’s
magnetic field for the past 400 Ma: evidence for a dipole structure
during the Mesozoic low. Journal of Geomagnetism and Geoelec-
tricity, 49: 601–614.
Schneider, D.A., and Kent, D.V., 1990. The time-averaged paleomag-
netic field. Reviews of Geophysics, 28:71–96.
Tanaka, H., Kono, M., and Uchimura, H., 1995. Some global features
of paleointensity in geological time. Geophysical Journal Interna-
tional,
120:97–102.
Tauxe, L., Staudigal, H., and Wijbrans, J.R., 2000. Paleomagnetism
and
40
Ar-
39
Ar ages from La Palma in the Canary Islands. Geoche-
mistry, Geophysics, Geosystems, (9):doi:10.1029/2000GC000063.
Tauxe, L., Constable, C., Johnson, C.L., Koppers, A.A.P., Miller, W.R.,
and Staudigal, H., 2003. Paleomagnetism of the southwestern U.S.A.
recorded by 0–5 Ma igneous rocks. Geochemistry, Geophysics,
Geosystems, 4(4): 8802, doi:10.1029/ 2002GC000343.
Wilson, R.L., 1970. Permanent aspects of the Earth’s non-dipole mag-
netic field over Upper Tertiary times. Geophysical Journal of the
Royal Astronomical Society, 19: 417–437.
286 GEOCENTRIC AXIAL DIPOLE HYPOTHESIS