
Arkani-Hamed, J., 2004a. Timing of the Martian core dynamo. Jour-
nal of Geophysical Research, 109(E3): E03006, doi:10.1029/
2003JE002195.
Arkani-Hamed J., 2004b. A coherent model of the crustal magnetic
field of Mars. Journal Of Geophysical Research, 109: E09005,
doi:10.1029/2004JE002265.
Arkani-Hamed, J., and Boutin, D., 2004. Paleomagnetic poles of Mars:
Revisited. Journal of Geophysical Research, 109: doi:10.1029/
2003JE0029.
Bliel, U., and Petersen, N., 1983. Variations in magnetization intensity
and low-temperature titano-magnetite oxidation of ocean floor
basalts. Nature, 301: 384–388.
Cain, J.C., Ferguson, B., and Mozzoni, D., 2003. An n ¼ 90 model of
the Martian magnetic field. Journal of Geophysical Research, 108:
10.1029/2000JE001487.
Cisowski, S.M., 1986. Magnetic studies on Shergotty and other SNC
meteorites. Geochemica Cosmochemica Acta, 50: 1043–1048.
Cisowski, S., and Fuller, M., 1978. The effect of shock on the magnet-
ism of terrestrial rocks. Journal of Geophysical Research, 83:
3441–3458.
Collinson, D.W., 1997. Magnetic properties of Martian meteorites:
implications for an ancient Martian magnetic field. Planetary
Science, 32: 803–811.
Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., Kletetschka, G.,
Ness, N.F., Remes, H., Lin, R.P., and Mitchell, D.L., 2001. The
global magnetic field of Mars and implications for crustal evolu-
tion. Geophysical Research Letters, 28 : 4015 –4018.
Frey, H., Shockey, K.M., Frey, E.L., Roark, J. H., and Sakimoto, S.E.H.,
2001. A very large population of likely buried impact basins in the
northern lowlands of Mars revealed by MOLA data. Lunar and Pla-
netary Science Conference XXXII, Abstr. 1680.
Gilder, S.A., Le Goff, M., Peyronneau, J., and Chervin, J., 2002.
Novel high pressure magnetic measurements with application
to magnetite. Geophysical Research Letters, 29: 10,1029/
2001GL014227, 2002.
Hargraves, R.B., Knudsen, J.M., Madsen, M.B., and Bertelsen, P.,
2001. Finding the right rocks on Mars. EOS: Transactions, Amer-
ican Geophysical Union, 82: 292–293.
Hartmann, W.K., and. Neukum, G., 2001. Cratering chronology and
the evolution of Mars.
Space Science Reviews, 96: 165–194.
Hood, L.L., and Hartdegen, K., 1997. A crustal magnetization model
for the magnetic field of Mars: a preliminary study of the Tharsis
region. Geophysical Research Letters, 24: 727–730.
Hood, L.L., and Zacharian, A., 2001. Mapping and modeling of mag-
netic anomalies in the northern polar region of Mars. Journal of
Geophysical Research, 106: 14601–14619.
Hood, L.L., Richmond, N.C., Pierazzo, E., and Rochette, P., Distribu-
tion of crustal magnetic fields on Mars: Shock effects of basin-
forming impacts. Geophysical Research Letters, 30(6): 1281,
doi:10.1029/2002GL016657.
Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000. Mineralogy
of the sources for magnetic anomalies on Mars. Meteoritics and
Planetary Science, 35: 895–899.
Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2002. The role of
hematite-ilmenite solid solution in the production of magnetic
anomalies in ground- and satellite-based data. Tectonophysics,
347: 167–177.
Kletetschka, G., Connerney, J.E.P., Ness, N.F., and Acuna, M.H.,
2004. Pressure effects on Martian crustal magnetization near
large impact basins. Meteoritics and Planetary Science, 39:
1839–1848.
Kirschvink, J.L., Maine, A.T., and Vali, H., 1997. Paleomagnetic evi-
dence of a low-temperature origin of carbonate in the Martian
meteorite ALH84001. Science, 275: 1629–1633.
Langlais, B., Purucker, M.E., and Mandea, M., 2004. Crustal magnetic
field of Mars. Journal of Geophysical Research, 109: E002008,
doi:10.1029/2003JE002048.
McSween, H.Y., and Treiman, A.H., 1998. Martian meteorites, Chap-
ter 6 in Planetary materials. Reviews in Mineralogy, 36: 53.
Melosh, H.J., 1980. Tectonic patterns on a reoriented planet: Mars.
Icarus, 44: 745–751.
Mitchell, D.L. et al., 2001. Probing Mars’ crustal magnetic field and
ionosphere with the MGS electron reflectometer. Journal of Geo-
physical Research, 106: 23,419–23,427.
Mohit, P.S., and Arkani-Hamed, J., 2004. Impact demagnetization of
the Martian crust. Icarus, 168: 305–317.
Murray, B.C., and Malin, M.C., 1973. Polar wandering on Mars.
Science, 179: 997–1000.
Nyquist, L.E. 2001. Ages and geological history of Martian meteor-
ites. In Kallenbach, R., Geiss, J., and Hartmann, W.K. (eds.),
Chronology and Evolution of Mars. Dordrecht, the Netherlands:
Kluwer Academic Publishers.
Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and
Acuna, M., 2000. An altitude-normalized magnetic map of Mars
and its interpretation. Geophysical Research Letters, 27:2449–2452.
Rochette, P., Fillion, G., Ballou, R., Brunet, F., Ouladdiaf, B., and
Hood, L., 2003. High pressure magnetic transition in pyrrhotite and
impact demagnetization on Mars. Geophysical Research Letters,
30(13): 1683, doi:10.1029/2003GL017359.
Schultz, P.H., and Lutz-Garihan, A.B., 1982. Grazing impacts on
Mars: a record of lost satellites. Journal Geophysical Research,
87: A84–A96.
Schultz, P.H., and Lutz-Garihan, A.B., 1988. Polar wandering of Mars.
Icarus, 73:91–141.
Schultz, R.A., 1997. Dual-process genesis for Valles Marineris and
troughs on Mars, presented at the XXVIII Lunar and Planetary
Science Conference, Houston, Texas.
Spada, G. 1996. Long-term rotation and mantle dynamics of the
Earth, Mars and Venus. Journal of Geophysical Research, 101:
2253–2266.
Tanaka, K.L., 1997. Origin of Valles Marineris and Noctis Labyr-
inthus, Mars, by structurally controlled collapses and erosion of
crustal materials, presented at the XXXVIII Lunar and Planetary
Science Conference, Houston, Texas.
Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart,
S.T., and Schuster, D.L., 2002. Records of an ancient Martian field
in ALH84001. Earth and Planetary Science Letters, 201: 449–463.
Wilkins, S.J., and Schultz, R.A., 2003. Cross faults in extensional set-
tings: stress triggering, displacement localization, and implications
for the origin of blunt troughs at Valles Marineris, Mars. Journal of
Geophysical Research, 108: E6, 5056, doi:1029/2002JE001968.
Willeman, R.J., 1984. Reorientation of planets with elastic litho-
spheres. Icarus, 60: 701–709.
Zuber, M.T. 2000. Internal structure and early thermal evolution of
Mars from Mars Global Surveyor topography and gravity. Science,
287: 1788–1793.
MAGNETIC FIELD OF SUN
The Sun has been observed to exhibit a breathtaking variety of mag-
netic phenomena on a vast range of spatial and temporal scales. These
vary in spatial scale from the solar radius down to the limit of present
resolution of the most powerful satellite instrumentation, and with
durations varying from minutes to hundreds of years, encompassing
the famous 11-year sunspot cycle. This dynamic and active field,
which is visible in extreme ultraviolet wavelengths as shown in Figure
M26/Plate 14a, is responsible for all solar magnetic phenomena, such
as sunspots, solar flares, coronal mass ejections and the solar wind,
and also heats the solar corona to extremely high temperatures. These
have important terrestrial consequences, causing severe magnetic storms
and major disruption to satellites, as well as having a possible impact on
MAGNETIC FIELD OF SUN 505