572 Charged Particle and Photon Interactions with Matter
Hada, M. and Sutherland, B. M. 2006. Spectrum of complex DNA damages depends on the incident radiation.
Radiat Res.
165: 223–230.
Hanai,
R., Yazu, M., and Hieda, K. 1998. On the experimental distinction between SSB and DSB in circular
DNA.
Int. J. Radiat. Biol. 73: 457–479.
Harrison,
L., Brame, K. L., Geltz, L. E., and Landry, A. M. 2006. Closely opposed apurinic/apyrimidinic sites
are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endo-
nuclease
IV, nucleotide excision repair and
AP
lyase cleavage. DNA Repair (Amst.) 5: 324–335.
Hatahet,
Z., Kow, Y. W., Purmal, A. A., Cunningham, R. P., and Wallace, S. S. 1994. New substrates for old
enzymes. 5-Hydroxy-2’-deoxycytidine and 5-hydroxy-2’-deoxyuridine are substrates for Escherichia
coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2’-deoxyuridine
is
a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269: 18814–18820.
Hieda,
K. and Ito, T. 1991. Radiobiological experiments in the X-ray region with synchrotron radiation. In:
Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, and E. Rubenstein (eds.), p. 431.
Amsterdam,
the Netherlands: North-Holland.
International
Commission on Radiation Units and Measurements. 1970. Linear Energy Transfer. ICRU Report
16. Washington,
DC.
Ito,
T. and Saito, M. 1988. Degradation of oligonucleotides by vacuum-UV radiation in solid: role of the phosphate
group and bases. Photochem. Photobiol. 48: 567–572.
Kashtanov, S., Augustsson, A., Luo, Y., Guo, J. H., Såthe, C., Rubensson, J. E., Siegbahn, H., Nordgren, J., and
Ågren, H. 2004. Local structure of liquid water studied by x-ray emission spectroscopy. Phys. Rev. B 69:
024201-1–024201-8.
Kozmin, S. G., Sedletska, Y., Reynaud-Angelin, A., Gasparutto, D., and Sage, E. 2009. The formation of dou-
ble-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage
in
eukaryotic cells. Nucl. Acids Res. 37: 1767–1777.
Krisch,
R. E., Flick, M. B., and
Trumbore,
C. N. 1991. Radiation chemical mechanism of single- and double-
strand
break formation in irradiated SV40 DNA. Radiat. Res. 126: 251–259.
La
Vere, T., Becker, D., and Sevilla, M. D. 1996.Yields of OH in gamma-irradiated DNA as a function of DNA
hydration:
Hole transfer in competition with OH formation. Radiat. Res. 145: 673–680.
Malyarchuk,
S., Youngblood, R., Landry, A. M., Quillin, E., and Harrison, L. 2003. The mutation frequency
of 8-oxo-7,8-dihydroguanine (8-oxodG) situated in a multiply damaged site: comparison of a single and
two
closely opposed 8-oxodG in Escherichia coli. DNA Repair (Amst.) 2: 695–705.
Malyarchuk,
S., Brame, K. L., Youngblood, R., Shi, R., and Harrison, L. 2004. Two clustered 8-oxo-7,8-
dihydroguanine (8-oxodG) lesions increase the point mutation frequency of 8-oxodG, but do not result in
double
strand breaks or deletions in Escherichia coli. Nucl. Acids Res. 32: 5721–5731.
Malyarchuk,
S., Castore, R., and Harrison, L. 2008. DNA repair of clustered lesions in mammalian cells:
Involvement
of non-homologous end-joining. Nucl. Acids Res. 36: 4872–4882.
Melvin,
T., Cunniffe, S. M., O’Neill, P., Parker, A. W., and Roldan-Arjona, T. 1998. Guanine is the target for
direct
ionisation damage in DNA, as detected using excision enzymes. Nucl. Acid Res. 26: 4935–4942.
Milligan,
J. R.,Aguilera, J.A., Nguyen, T. T., Paglinawan, R. A., and Ward, J. F. 2000. DNA strand-break yields
after post-irradiation incubation with base excision repair endonucleases implicate hydroxyl radical pairs
in
double-strand break formation. Int. J. Radiat. Biol. 76: 1475–1483.
Morgner,
H. 1998. Electron spectroscopy for the determination of concentration depth profoles and for the
investigation
of local electric elds. Surf. Investig. 13: 463–474.
Nikjoo,
H., Charlton, D. E., and Goodhead, D. T. 1994. Monte Carlo track structure studies of energy deposi-
tion
and calculation of initial DSB and RBE. Adv. Space Res. 14: (10)161–(10)180.
Nikjoo,
H., O’Neill, P., Goodhead, D.
T.,
and
Terrissol,
M. 1997. Computational modelling of low-energy
electron-induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol. 71:
467–483.
Nikjoo, H., Uehara, S., Wilson, W. E., Hoshi, M., and Goodhead, D. T. 1998. Track structure in radiation biol-
ogy: Theory
and applications. Int. J. Radiat. Biol. 73: 355–364.
Nikjoo,
H., O’Neill, P., Terrissol, M., and Goodhead, D. T. 1999. Quantitative modelling of DNA damage using
Monte
Carlo track structure method. Radiat. Environ. Biophys. 38: 31–38.
Nikjoo,
H., O’Neill, P., Wilson, W. E., and Goodhead, D. T. 2001. Computational approach for determining the
spectrum
of DNA damage induced by ionizing radiation. Radiat. Res. 156: 577–583.
Nikjoo,
H., Bolton, C. E., Watanabe, R., Terrisol, M., O’Neill, P., and Goodhead, D. T. 2002. Modelling of
DNA
damage induced by energetic electrons (100
eV
to 100
keV).
Radiat. Prot. Dosim. 99: 77–80.
O’Neill,
P. 2001. Radiation-induced damage in DNA. In Radiation Chemistry, pp. 585–622. Dordrecht,
the Netherlands: Elsevier Science.