734 Charged Particle and Photon Interactions with Matter
Nagahara, S., Sakurai, Y., Wakita, M., Yamamoto,Y., Tagawa, S., Komura, M., Yano, E., and Okazaki, S. 2000.
Methods to improve radiation sensitivity of chemically amplied resists by using chain reactions of acid
generation.
Proc. SPIE 3999: 386–394.
Nakano,
A., Okamoto, K., Kozawa, T., and Tawaga, S. 2004a. Pulse radiolysis study on proton and charge
transfer
reactions in solid poly(methyl methacrylate). Jpn. J. Appl. Phys. 43: 4363–4367.
Nakano,
A., Okamoto, K., Kozawa, T., and Tagawa, S. 2004b. Effects of ester groups on proton generation and
diffusion
in polymethacrylate matrices. Jpn. J. Appl. Phys. 43: 3981–3983.
Nakano,
A., Okamoto, K., Yamamoto, Y., Kozawa, T., Tagawa, S., Kai, T., and Nemoto, H. 2005. Dependence
of acid yield on acid generator in chemically amplied resist for post-optical lithography. Jpn. J. Appl.
Phys.
44: 5832–5835.
Nakano,
A., Kozawa, T., Tagawa, S., Szreder, T., Wishart, J. F., Kai, T., and Shimokawa, T., 2006a. Reactivity
of acid generators for chemically amplied resists with low-energy electrons. Jpn. J. Appl. Phys. 45:
L197–L200.
Nakano, A., Kozawa, T., Okamoto, K., Tagawa, S., Kai, T., and Shimokawa, T. 2006b. Acid generation mecha-
nism of poly(4-hydroxystyrene)-based chemically amplied resists for post-optical lithography: Acid
yield and deprotonation behavior of poly(4-hydroxystyrene) and poly(4-methoxystyrene). Jpn. J. Appl.
Phys.
45: 6866–6871.
Natsuda,
K., Kozawa, T., Saeki, A., Tagawa, S., Kai, T., and Shimokawa, T. 2008. Study of the reaction of acid
generators
with epithermal and thermalized electrons. Jpn. J. Appl. Phys. 47: 4932–4935.
Natsuda,
K., Kozawa, T., Okamoto, K., Saeki, A., and Tagawa, S. 2009. Correlation between C
37
parameters
and acid yields in chemically amplied resists upon exposure to 75 keV electron beam. Jpn. J. Appl.
Phys.
48: 06FC05.
Ogasawara,
M., Tanaka, M., and Yoshida, H. 1987. Reaction of solvated electron with poly(methyl methacry-
late) and substituted poly(methyl methacrylate) in hexamethylphosphoramide studied by pulse radioly-
sis.
J. Phys. Chem. 91: 937–941.
Oizumi,
H., Tanaka, Y., Kumise, T., Shiono, D., Hirayama, T., Hada, H., Onodera, J., Yamaguchi, A., and
Nishiyama, I. 2007. Evaluation of new molecular resist for EUV lithography. J. Photopolym. Sci.
Technol.
20: 403–410.
Okamoto,
K., Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2003. Subpicosecond pulse radiolysis study
of
geminate ion recombination in liquid benzene. Chem. Lett. 32: 834–835.
Okamoto,
K., Kozawa, T., Saeki,A.,Yoshida,Y., and Tagawa, S. 2007. Subpicosecond pulse radiolysis in liquid
methyl-substituted
benzene derivatives. Radiat. Phys. Chem. 76: 818–826.
O’Neill,
P., Steenken, S., and Schulte-Frohlinde, D. 1975. Formation of radical cations of methoxylated ben-
zenes by reaction with hydroxyl radicals, thallium(2+), silver(2+), and peroxysulfate (SO4
−
) in aqueous
solution. Optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study.
J. Phys. Chem.
79: 2773–2779.
Onsager,
L. 1938. Initial recombination of ions. Phys. Rev. 54: 554–557.
Ortica,
F., Scaiano, J. C., Pohlers, G., Cameron, J. F., and Zampini, A. 2000. Laser ash photolysis study of two
aromatic
N-oxyimidosulfonate photoacid generators. Chem. Mater. 12: 414–420.
Parikh,
M. and Kyser, D. F. 1979. Energy deposition functions in electron resist lms on substrates. J. Appl.
Phys.
50: 1104–1111.
Pohlers,
G., Scaiano, J. C., and Sinta, R. 1997. A novel photometric method for the determination of photo-
acid generation efciencies using benzothiazole and xanthene dyes as acid sensors. Chem. Mater. 9:
3222–3230.
Porter, G. and Wright, F. J. 1955. Primary photochemical processes in aromatic molecules. 3. Absorption spec-
tra
of benzyl, anilino, phenoxy and related free radicals. Trans. Faraday Soc. 51: 1469–1475.
Raner,
K. D., Lusztyk, J., and Ingold, K. U. 1989. Ultraviolet visible spectra of halogen molecule/arene and
halogen
atom/arene π-molecular complexes. J. Phys. Chem. 83: 564–570.
Rassolov,
V. A. and Mozumder, A. 2001. Monte Carlo simulation of electron thermalization distribution in
liquid hydrocarbons: Effects of inverse collisions and of an external electric eld. J. Phys. Chem. B 105:
1430–1437.
Rishton, S. A. and Kern, D. P. 1987. Point exposure distribution measurements for proximity correction in
electron-beam
lithography on a sub-100
nm
scale. J. Vac. Sci. Technol. B 5: 135–141.
Ronlan,
A., Coleman, J., Hammerich, O., and Parker, V. D. 1974. Anodic oxidation of methoxybiphenyls: Effect
of the biphenyl linkage on aromatic cation radical and dication stability. J. Am. Chem. Soc. 96: 845–849.
Ryan, J. M., Hoole, A. C. F., and Broers, A. N. 1995. A study of the effect of ultrasonic agitation during
development of poly(methylmethacrylate) for ultrahigh resolution electron-beam lithography. J. Vac. Sci.
Technol. B
13: 3035–3039.