
x
1s
=
a
β + b
,
β
x
2s
=
βa(kβ + kb + a)
(β + b)
2
.
u
2
(x
1
,x
2
)
ψ =0
T =1 a =1 b =0, 5 c =0, 5
β =0, 5
x
1s
x
2s
˙x
1
(t)=r
1 −
1
k
x
1
x
1
− αx
2
1 − exp(−λ
1
x
1
)
;
˙x
2
(t)=−bx
2
+ β
1 − exp(−λ
2
x
2
)
x
2
.
(x
2
=0)
˙x
1
(t)=r
1 −
1
k
x
1
x
1
,
x
1s
=ln
1+
b
β
−
1
λ
2
; x
2s
=
r
k
x
1s
1 −
x
1s
k
1 −
1+
β
b
λ
1
λ
2
.
r k α b λ
1
λ
2