
Ocean and surrounding land masses, and perhaps up to 6
Cof
cooling in Greenland.
The 8.2 kyr event is well documented in the paleoclimate
record, and it has an interesting viable cause, or trigger, for
the abrupt cooling. These two properties in addition to its short
length make it an excellent candidate for simulation using
GCMs (Schmidt and LeGrande, 2005). Modeling studies of
the 8.2 kyr event support this theory of abrupt climate change
(LeGrande et al., 2006). Conversely, the match between model
simulations and paleoclimate record provides a means to eval-
uate the skill of climate models.
Allegra N. LeGrande
Bibliography
Ágústsdóttir, A.M., 1998. Abrupt climate changes and the effects of
North Atlantic deepwater formation: Results from the GENESIS global
climate model and comparison with data from the Younger Dryas event
and the event at 8200 y
BP and the present. PhD Thesis, Pennsylvania,
USA, The Pennsylvania State University, University Park.
Alley, R., and Ágústsdóttir, A.M., 2005. The 8k event: Cause and
consequences of a major Holocene abrupt climate change. Quaternary
Sci. Rev., 24, 1123–1149.
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and
Clark, P.U., 1997. Holocene climatic instability: A prominent,
widespread event 8200 years ago. Geology, 25, 483–486.
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes,
P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., and
Zielinski, G.A., 1993. Abrupt increase in snow accumulation at the
end of the Younger Dryas event. Nature, 362, 527–529.
Arz, H.W., Gerhardt, S., Pätzold, J., and Röhl, U., 2001. Millennial-
scale changes of surface- and deep-water flow in the western tropical
Atlantic linked to Northern Hemisphere high-latitude climate during
the Holocene. Geology, 29(3), 239–242.
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T.,
Kerwin, M.W., Bilodeau, G., McNeely, R., Souhon, J., Morehead, M.D.,
and Gagnon, J.-M., 1999. Forcing of the cold event of 8,200 years
ago by catastrophic drainage of Laurentide lakes. Nature, 400,
344–348.
Bauer, E., Ganopolski, A., and Montoya, M., 2004. Simulation of the
cold climate event 8,299 years ago by meltwater outburst from Lake
Agassiz. Paleoceanography, 19, PA3014.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., 2001. Persis-
tent solar influence on North Atlantic climate during the Holocene.
Science, 294, 2130–2136.
Broecker, W.S., Peteet, D.M., and Rind, D., 1985. Does the ocean-
atmosphere system have more than one stable mode of operation?
Nature, 315(2), 21–26.
Broecker, W.S., 1998. Paleocean circulation during the last deglaciation:
A bipolar seesaw? Paleoceanography, 13(2), 119–121.
Brook, E.J., Harder, S., Severinghaus, J.P., Steig, E.J., and Sucher, C.M.,
2000. On the origin and timing of rapid changes in atmospheric
methane during the last glacial period. Glob. Biogeochem. Cycles, 14,
559–572.
Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J.M., Schwander, J., and
Stauffer, B., 1993. Synchronous changes in atmospheric CH
4
and Greenland climate between 40 and 8 kyBP. Nature, 366, 443–445.
Clarke, G.K.C., Leverington, D.W., Teller, J.T., and Dyke, A.S., 2004.
Paleohydraulics of the last outburst flood from glacial Lake Agassiz
and the 8200
BP cold event. Quaternary Sci. Rev., 23, 389–407.
Cuffey, K.M., Clow, G.D., Alley, R.B., Stuiver, M., Waddington, E.D.,
and Saltus, R.W., 1995. Large Arctic temperature change at the
glacial-Holocene transition. Science, 270, 455–458.
Dahl, S.O., and Nesje, A., 1994. Holocene glacier fluctuations at Hardan-
gerjokulen, central-southern Norway: A high-resolution composite
chronology from lacustrine and terrestrial deposits. The Holocene, 4,
269–277.
Dansgaard, W., 1987. Ice core evidence of abrupt climatic changes. In
Berger, W.J., and Labeyrie, L.D. (eds.), Abrupt Climatic Change:
Evidence and Implications. Dordrecht, The Netherlands: Reidel,
pp. 223–233.
Dean, W.E., Forester, R.M., and Bradbury, J.P., 2002. Early Holocene
change in atmospheric circulation in the Northern Great Plains: an
upstream view of the 8.2 ka cold event. Quaternary Sci. Rev., 21,
1763–1775.
De Vernal, A., Hillaire-Marcel, C., von Grafenstein, U., and Barber, D.,
1997. Researchers Look for Links Among Paleoclimate Events. EOS,
Transactions of the American Geophysical Union,vol.78, pp. 247–249.
Dyke, A.S., 2004. An outline of North American Deglaciation with empha-
sis on central and northern Canada. In Ehlers, J., and Gibbard, P.L.
(eds.), Quaternary Glaciations – Extent and Chronology, Part II: North
America. Amsterdam: Elsevier, pp. 371–406.
Field, C.V., Schmidt, G.A., Koch, D.M., and Salyk, C., 2006. Modeling pro-
duction and climate-related impacts on 10Be concentration in ice cores.
J. Geophys. Res. – Atmos., 111, D15107, doi: 10.1029/ 20055JD006410.
Gasse, F., and Van Campo, E., 1994. Abrupt postglacial climate events
in West Asia and North-Africa monsoon domains. Earth Planet Sci.
Lett., 126, 435–456.
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U.,
2001. Southward migration of the inter-tropical convergence zone
through the Holocene. Science, 293, 1304–1308.
Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G., 1994. Isotope
stratigraphy, sedimentation rates, deep circulation, and carbonate
events in the Labrador Sea during the last 200 ka. Can. J. Earth
Sci., 31,63–89.
Hillaire-Marcel, C., and de Vernal, A., 1995. Mais que s’
est ~ il donc passé
vers 8,000 ans
BP? Association Québec Etude Quaternary, Annual
meeting, University of Montreal, Abstracts volume, 16.
Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.,
1999. Inverse modeling of methane sources and sinks using the adjoint
of a global transport model. J. Geophys. Res., 104, 26137–26160.
Hu, F.S., Slawinski, D., Wright, H.E. Jr., Ito, E., Johnson, R.B., Kelts, K.R.,
McEwan, R.F., and Boedigheimer, A., 1999. Abrupt changes in North
American climate during the early Holocene times. Nature, 400, 437–440.
Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S., 1996.
Rapid climate changes in the tropical Atlantic region during the last
deglaciation. Nature, 380,51–54.
Josenhans, H.W., and Zevenhuizen, J., 1990. Dynamics of the Laurentide
Ice Sheet in Hudson Bay, Canada. Mar. Geol., 92,1–26.
Keigwin, L.D., Sachs, J.P., Rosenthal, Y., and Boyle, E.A., 2005. The 8200
y
BP event in the slope water system, western subpolar North Atlantic.
Paleoceanography, 20, PA2003.
Kerwin, M.W., 1996. A Regional Stratigraphic Isochron (ca. 8000
14
CyBP)
from Final Deglaciation of Hudson Strait. Quaternary Res., 46,89–98.
Klassen, R.W., 1983. Lake Agassiz and the late glacial history of northern
Manitoba. In Teller, J.T., and Clayton, L. (eds.), Glacial Lake Agassiz.
St. john's, NL: Geological Association of Canada. GAC Special Paper
26, pp. 97–115.
Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., and
Spurk, M., 1998. A regional 8200 cal y
BP cooling event in northwest
Europe, induced by final stages of the Laurentide ice sheet deglacia-
tion? Journal of Quaternary Science, 13, 165–169.
Klitgaard-Kristensen, D., Sejrup, H.P., and Haflidason, H., 2001. The
last 18 kyr fluctuations in Norwegian Sea surface conditions and impli-
cations for the magnitude of climatic change: Evidence from the North
Sea. Paleoceanography, 15(5), 455–467.
Kneller, M., and Peteet, D., 1999. Late-glacial to early Holocene climate
changes from a central Appalachian pollen and macrofossil record.
Quaternary Res., 51, 133–147.
LeGrande, A.N., Schmidt, G.A., Shindell, D.T., Field, C.V., Miller, R.L.,
Koch, D.M., Faluvegi, G., and Hoffmann, G., 2006. Consistent simula-
tions of multiple proxy responses to an abrupt climate change event.
Proc. Natl. Acad. Sci., 104(3), 837–842.
Leuenberger, M.C., Lang, C., and Schwander, J., 1999. d
15
N measurements
as a calibration tool for the paleothermometer and gas-ice age differ-
ences: A case study for the 8200
BP event on GRIP ice. J Geophys.
Res., 104D, 22163–22170.
Leverington, D.W., Mann, J.D., and Teller, J.T., 2002. Changes in the
bathymetry and volume of glacial Lake Agassiz between 9200 and
7600
14
CyBP. Quaternary Res., 57, 244–252.
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M. et al., 2000.
Holocene Climate Variability in Antarctica Based on 11 Ice-Core
Isotopic Records. Quaternary Res., 54, 348–358.
942 THE 8,200-YEAR BP EVENT