
Bibliography
Berger, A., 1977. Long-term variations of the earth’s orbital elements.
Celestial Mech., 15,53–74.
Berger, A., 1978. Long-term variations of daily insolation and quaternary
climatic changes. J. Atmos. Sci., 35, 2362–2367.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., 2001.
Persistent solar influence on North Atlantic climate during the
Holocene. Science, 294, 2130–2136.
Daubechies, I., (1992). Ten Lectures on Wavelets. Philadelphia: SIAM.
Davison, A.C., and Hinkley, D.V., 1999. Bootstrap Methods and their
Application. Cambridge: Cambridge University Press.
Efron, B., and Tibshirani, R.J., 1998. An Introduction to the Bootstrap.
Boca Raton, FL: Chapman & Hall/ CRC.
Gentleman, W.M., 1969. An error analysis of Goertzel’s (Watt’s) method
for computing Fourier coefficients. Comp. J., 12, 160–165.
Johnson, J., Thomson, D.J., Wu, E.X., and Williams, S.C.R., 1996.
Multiple-window spectrum estimation applied to in vivo NMR spectro-
scopy. J. Mag. Reson., B110, 138–149.
Kedem, B., 1994. Time Series Analysis by Higher Order Crossings. New
York: IEEE Press.
Lahiri, S.N., 2003. Resampling Methods for Dependent Data. New York:
Springer.
Laskar, J., 1990. The chaotic motion of the solar system: A numerical esti-
mate of the size of the chaotic zones. Icarus, 88, 266–291.
Laskar, J., 1999. The limits of earth orbital calculations for geological time-
scale use. Phil. Trans. R. Soc. Lond. A, 357, 1735–1759.
Laskar, J., Joutel, F., and Boudin, F., 1993. Orbital, precessional, and
insolation quantities for the earth from 20 myr to +10 myr. Astron.
Astrophys., 270, 522–533.
Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced
data. Astrophys. J. Suppl. Ser., 39, 447
–462.
Mallat, S., (2001). A Wavelet Tour of Signal Processing (2nd edn.). San
Diego: Academic Press.
Pälike, H., and Shackleton, N.J., 2000. Constraints on astronomical para-
meters from the geological record for the last 25 Myr. Earth Planet.
Sci. Lett., 182,1–14.
Papoulis, A., 1962. The Fourier Integral and its Applications. New York:
McGraw-Hill.
Percival, D.B., and Walden, A.T., 1993. Spectral Analysis for Physical
Applications; Multitaper and Conventional Univariate Techniques.
Cambridge: Cambridge University Press.
Percival, D.B., and Walden, A.T., 2000. Wavelet Methods for Time Series
Analysis. Cambridge: Cambridge University Press.
Rao, A.R., Hamed, K.H., and Chen, H.-L., 2003. Nonstationarities in
Hydrologic and Environmental Time Series. Dordrecht: Kluwer.
Rayleigh, L., 1903. On the spectrum of an irregular disturbance. Phil.
Mag., 41, 238–243. (In Scientific Papers by Lord Rayleigh, vol. V,
Art. 285, New York: Dover Publications, 1964, pp. 98–102).
Scargle, J.D., 1981. Studies in astronomical time series analysis. I. Model-
ing random processes in the time domain. Astrophys. J. Suppl. Ser., 45,
1–71.
Shackleton, N.J., and Pisias, N.G., 1985. Atmospheric carbon dioxide,
orbital forcing, and climate. In Sundquist E., and Broeker W. (eds.),
The Carbon Cycle and Atmospheric CO
2
: Natural Variations Archean
to Present. Washington: AGU, Geophysical Monograph 32,
pp. 412–417.
Shackleton, N.J., Berger, A., and Peltier, W.R., 1990. An alternative astro-
nomical calibration of the lower Pleistocene timescale based on ODP
site 677. Trans. R. Soc. Edinburgh Earth Sci., 81, 251–261.
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider,
D.A., 1995a. A new late Neogene time scale: Application to leg 138
sites. Proc. Ocean Drill. Program Sci. Results, 138,73–101.
Shackleton, N.J., Hall, M.A., and Pate, D., 1995b. Pliocene stable isotope
stratigraphy of site 846. Proc. Ocean Drill. Program Sci. Results,
138, 337–355.
Singleton, R.A., 1969. An algorithm for computing the mixed radix
fast Fourier transform. IEEE Trans. Audio Electroacoust., 17(2),
93–103.
Slepian, D., 1978. Prolate spheroidal wave functions, Fourier analy-
sis, and uncertainty V: The discrete case. Bell Syst. Tech. J.,
57, 1371–1429.
Thomson, D.J., 1977. Spectrum estimation techniques for characterization
and development of WT4 waveguide. Bell Syst. Tech. J., 56, Part I
1769–1815, Part II, 1983–2005.
Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc.
IEEE, 70, 1055–1096.
Thomson, D.J., 1990a. Quadratic-inverse spectrum estimates: Applications
to paleoclimatology. Phil. Trans. R. Soc. Lond. A, 332, 539–597.
Thomson, D.J., 1990b. Time series analysis of Holocene climate data. Phil.
Trans. R. Soc. Lond. A, 330, 601–616.
Thomson, D.J., 1995. The seasons, global temperature, and precession.
Science, 268,59–68.
Thomson, D.J. 2001. Multitaper analysis of nonstationary and nonlinear
time series data. In Fitzgerald, W., Smith, R., Walden, A., and
Young, P. (eds.), Nonlinear and Nonstationary Signal Processing.
Cambridge: Cambridge University Press, pp. 317–394.
Thomson, D.J., and Chave, A.D., 1991. Jackknifed error estimates for
spectra, coherences, and transfer functions. In Haykin, S. (ed.),
Advances in Spectrum Analysis and Array Processing
, vol. 1, chapter 2.
Englewood Cliffs, NJ: Prentice-Hall, pp. 58–113.
Thomson, D.J., Lanzerotti, L.J., and Maclennan, C.G., 2001. The inter-
planetary magnetic field: Statistical properties and discrete modes.
J. Geophys. Res., 106, 15941–15962.
Thomson, D.J., 2007. Jackknifing multitaper spectrum estimates. IEEE
Signal Processing Magazine, 24(7), 20–30.
Thomson, D.J., Lanzerotti, L.J., Vernon, F.L., III, Lessard, M.R., and
Smith, L.T.P., 2007. Solar modal structure of the engineering environ-
ment. Pr oceedings of the IEEE, 95, 1085–1132.
Tukey, J.W., 1967. An introduction to the calculations of numerical spec-
trum analysis. In Harris, B. (ed.), Spectral Analysis of Time Series,
New York: Wiley, pp. 25–46.
Weedon, G., 2003. Time–Series Analysis and Cyclostratigraphy.
Cambridge: Cambridge University Press.
Cross-references
Astronomical theory of climate change
Eccentricity
Obliquity
Ocean Drilling Program (ODP)
Precession, climatic
SPECMAP
TRANSFER FUNCTIONS
Introduction
Paleoecologists use a number of different methods to recon-
struct past changes in the Earth’s climate and environment.
One of the most useful is the analysis of the remains of micro-
scopic plants and animals preserved in ocean, lake, and mire
sediments. Interpretation of these biostratigraphic records is
usually based on the principle of uniformitarianism: that is,
knowledge of an organism’s present-day ecology and climate
preferences can be used to make inferences about past condi-
tions. Transfer functions are mathematical response functions
that allow paleoecologists to formalize this procedure by defin-
ing a series of equations that relate a set of biological species
data to climate or other environmental parameters.
The transfer function methodology has developed rapidly
since the early 1970s following the pioneering work of Imbrie
and Kipp (1971) on sea surface temperature reconstruction
from fossil foraminifera. Since then the approach has become
one of the main tools for studying environmental change on a
range of timescales, and has been used to derive quantitative
paleoclimate and other environmental estimates from various
TRANSFER FUNCTIONS 959