Newtonian model of mechanics 
27
is 
the two-dimensional jump of the function 
12
(, )gx x  at the point of discontinuity 
()
() ()
12
,
kk
xx ,  = 1,2,...,kn. 
Let 
123
(, , )gx x x  be a non-decreasing function with respect to each variable, defined 
on a three-dimensional interval 
Δ , and which verifies the inequality 
)( )
)
Δ≡+++−++
3 123 1 12 23 3 12 23 3
,, , , , ,gx x x gx h x h x h gx x h x h  
)
)
)
−+ +− + + + +
1123 3 11223 1123
,, , , ,,gx hxx h gx hx hx gx hx x  
()
)
)
+++ +− ≥
12 23 123 3 123
,, ,, ,,0gx x h x gx x x h gx x x ,  
>
123
,, 0hhh ; 
 (1.1.62) 
if 
123
(,, )
xxx  is a continuous function on Δ , then the triple Stieltjes integral 
()()
∫∫∫
123 3 123
,, D ,,fxx x gxx x
Δ
 does exist. If the function 
123
(, , )gx x x  admits 
continuous partial derivatives of third order, then the triple Stieltjes integral is reduced 
to a 
triple Riemann integral 
()()
 
123 3 123
() , , D , ,Sfxxxgxxx
Δ
∫∫∫
 
 
()
 
123
() , ,Rfxxx
Δ
=
∫∫∫
)
′′
123
123 1 2 3
,, ddd
xxx
gxxxxxx. 
 
(1.1.63) 
Hence, in the above-mentioned conditions, one may pass directly from the Stieltjes 
integral to the Riemann one, admitting the relation 
()
)
′′
123
3123 123 123
D,, ,,ddd
xxx
gx x x g x x x x x x; 
 
(1.1.64) 
()
3123
D,,gx x x  represents here the three-dimensional differential of the function 
()
123
,,gx x x , while 
)
′′′
123
123
,,
xxx
gxxx is the three-dimensional derivative of this 
function. As in the case of the one- or two-dimensional Stieltjes integral, if 
()
123
,,
xxx  and 
()
123
,,gx x x  are distributions for which the product
()
123
,,
xxx  
()
⋅
3123
D,,gx x x  makes sense, then this interpretation is always possible. Introducing 
the Heaviside function, one can show that  
()
)
)
 
000 000
123 3 1 1 2 2 3 3 1 2 3
() , , D , , , ,S fxxx x xx xx x fxxx
Δ
θ −−−=
∫∫∫
, 
 
(1.1.65) 
where 
()
123
,,
xxx  is a continuous function on Δ . Let be now the function 
()()
()
=
=+−−−
∑
() () ()
123 123 1 2 3
123
1
,, ,, , ,
n
kkk
k
k
gxxx gxxx gxxxxxxθ
, 
 
(1.1.66) 
where 
k
g  are constants, while 
)
123
,,gx x x
 is the continuous part of this function; one 
may show that