Ferroelectric nanostructures for device applications 567
Li P and Lu T-M (1991), ‘Conduction mechanisms in BaTiO
3
thin films’, Phys. Rev. B 43,
14261–14264.
Lines M and Glass A M (1967), Principles and Applications of Ferroelectrics and Related
Materials, Clarendon, Oxford.
Liu S and Li Y (2004), ‘Research on the electrocaloric effect of PMN/PT solid solution
for ferroelectrics MEMS microcooler’, Mat. Sci. & Eng. B113, 46–49.
Lou X, Zhang M, Redfern S A T, and Scott J F (2006), ‘Local phase decomposition as a
cause of polarization fatigue in ferroelectric thin films’, Phys. Rev. Lett. 97, 177601
(2006).
Ma W H and Hesse D (2004), ‘Microstructure and piezoelectric properties of sub-80 nm
high polycrystalline SrBi
2
Ta
2
O
9
nanostructures within well-ordered arrays’, Appl.
Phys. Lett. 85, 3214–3216.
Mao Y, Park T-J and Wong S S (2005), ‘Synthesis of classes of ternary metal oxide
nanostructures’, Chem. Commun. 2005, 5721–5735.
Masuda H and Fukuda K (1995), ‘Ordered metal nanohole arrays made by a two-step
replication of honeycomb structures of anodic alumina’, Science 268, 1466–1468.
Mermin N D (1979), ‘The topological theory of defects in ordered media’, Rev. Mod.
Phys. 51, 591–648.
Milliken A D, Bell A J, and Scott J F (2006), ‘Dependence of breakdown field on
dielectric (inter-electrode) thickness in base-metal electroded multilayer capacitors’,
Appl. Phys. Lett. 90, 112910.
Miranda F A et al. (2002), ‘Ferroelectric thin films-based technology for frequency- and
phase-agile microwave communications applications’, Integ. Ferroelectrics 42, 131.
Mischenko A, Zhang Q, Scott J F, Whatmore R W, and Mathur N D (2006), ‘Giant
electrocaloric effect in thin-film PZT’, Science 311, 1270–1271.
Mishina E D, Vorotilov K A, Vasil’ev V A, et al. (2002), ‘Porous silicon-based ferroelectric
nanostructures’, J. Exp. Theor. Phys. 95, 502–504.
Mishina E D, Sherstyuk N E, Stadnuchyuk V, et al. (2003), ‘Ferroelectrics templated in
nanoporous silicon membranes’, Ferroelectrics 286. 927–933.
Mishina E D (2005), ‘Nonlinear optics of ferroelectrics: towards nanometers and
picoseconds’, Ferroelectrics 314, 57–72.
Mitsui T and Furuichi J (1953), ‘Domain structure of rochelle salt and KH2P04,’ Phys.
Rev. 90, 193–202.
Mitsui T, Tatsuzaki, I and Nakamurta E (1969), ‘An introduction to the physics of
ferroelectrics,’ Maki-Shoten, Tokyo, (translation: Gorden and Breach, London, 1976).
Morrison F D, Ramsay L and Scott J F (2003), ‘High aspect ratio piezoelectric strontium–
bismuth–tantalate nanotubes’, J. Phys. Condens. Mat. 15, L527–532.
Naranjo B, Gimzewski J K, and Putterman S (2005), ‘Observation of nuclear fusion
driven by a pyroelectric crystal’, Nature 434, 1115–1117.
Naumov I, Bellaiche L and Fu H (2004), ‘Unusual phase transitions in ferroelectric
nanodisks and nanorods’, Nature 432, 737–740.
Paruch P, Giamarchi T, Tybell T and Triscone J-M (2006), ‘Nanoscale studies of domain
wall motion in epitaxial ferroelectric thin films’, J. Appl. Phys. 100, 051608.
Parsuch P, Tybell T and Triscone J M (2001), ‘Nanoscale control of ferroelectric polarization
and domain size in epitaxial Pb(ZrO.2TiO.8)0-3 thin films. Applied Physics Letters,
79: 530–532.
Paz de Araujo C A, Cuchiaro J D, McMillan L D, Scott M C, and Scott J F (1995),
‘Fatigue-free ferroelectric capacitors with platinum electrodes’, Nature 374, 627–629.
Pintilie L and Alexe M (2005), ‘Metal–ferroelectric–metal heterostructures with Schottky
contacts. I. Influence of the ferroelectric properties’, J. Appl. Phys. 98, 124103.