Handbook of dielectric, piezoelectric and ferroelectric materials536
Ling H C et al. (1990), ‘High dielectric constant and small temperature coefficient bismuth-
based dielectric compositions’, J Mater Res, 5(8), 1752–1762.
Liu D H et al. (1993), ‘Phase structure and dielectric properties of Bi
2
O
3
–ZnO–Nb
2
O
5
–
based dielectric ceramics’, J Am Ceram Soc, 76(8), 2129–2132.
Liu Y et al. (2006), ‘Crystal chemistry on a lattice: the case of BZN and BZN–related
pyrochlores’, J Solid State Chem, 179, 2141–2149.
Liu Y et al. (2007), ‘Direct observation of structural disordering of BZN-based pyrochlores’,
J Electroceramics, published online.
Lu J et al. (2003a) , ‘Low-loss, tunable bismuth zinc niobate films deposited by rf
magnetron sputtering’, Appl Phys Lett, 83, 2411–2413.
Lu J et al. (2003b), ‘Composition control and dielectric properties of bismuth zinc niobate
thin films synthesized by radio-frequency magnetron sputtering’, J Vac Sci Technol,
21(5) 2855–2862.
Lu J et al. (2004), ‘Influence of strain on the dielectric relaxation of pyrochlore bismuth
zinc niobate thin films’, Appl Phys Lett, 84, 957–959.
Lu J et al. (2006), ‘Low-loss tunable capacitors fabricated directly on gold bottom electrodes’,
Appl Phys Lett, 88, 112905.
Melot B et al. (2006), ‘Displacive disorder in three high-k bismuth oxide pyrochlores’,
Mater Res Bull, 41, 961–966.
Mergen A et al. (1996), ‘Fabrication and crystal chemistry of Bi
3/2
ZnSb
3/2
O
7
pyrochlore’,
J Euro Ceram Soc, 16, 1041–1050.
Mergen A et al. (1997), ‘Crystal chemistry, thermal expansion and dielectric properties of
(Bi
1.5
Zn
0.5
)(Sb
1.5
Zn
0.5
)O
7
pyrochlore’, Mater Res Bull, 32(2), 175–189.
Miles G C et al. (2006), West A R, ‘Pyrochlore phases in the system ZnO–Bi
2
O
3
–Sb
2
O
5
:
I. Stoichiometries and phase equilibria’, J Am Ceram Soc, 89(3), 1042–1046.
Nino J C et al. (2001a), ‘Dielectric relaxation in Bi
2
O
3
–ZnO–Nb
2
O
5
cubic pyrochlore’,
J Appl Phys, 89, 4512–4516.
Nino J C et al. (2001b), ‘Phase formation and reactions in the Bi
2
O
3
–ZnO–Nb
2
O
5
–Ag
pyrochlore system’, J Mater Res, 16(5), 1460–1464.
Nino J C et al. (2002), ‘Correlation between infrared modes and dielectric relaxation in
Bi
2
O
3
–ZnO–Nb
2
O
5
cubic pyrochlore’, Appl Phys Lett, 23, 4404–4406.
Okaura S et al. (2005), ‘MOCVD growth of Bi
1.5
Zn
1.0
Nb
1.5
O
7
(BZN) epitaxial thin films
and their electrical properties’, Jpn J Appl Phys, 44, 6957–6959.
Park J et al. (2005), ‘Microwave dielectric properties of tunable capacitors employing
bismuth zinc niobate thin films’, J Appl Phys, 97, 084110.
Park J et al. (2006), ‘Distributed phase shifter with pyrochlore bismuth zinc niobate thin
films’, IEEE Microwave and Wireless Components Letters, 5, 264–266.
Park J-H et al. (2006), ‘Bismuth–zinc–niobate embedded capacitors grown at room
temperature for printed circuit board applications’, Appl. Phys. Lett., 88, 192902.
Peng D et al. (2004), ‘Study on relationship between sintering atmosphere and dielectric
properties for Bi
2
O
3
–ZnO–Ta
2
O
5
system’, Ceram Int, 30, 1199–1202.
Peng Z et al. (2004), ‘Dielectric resonator antennas using high permittivity ceramics’,
Ceram. Int., 30, 1211–1214.
Randall C A et al. (2003), ‘Bi-pyrochlore and zirconolite dielectrics for integrated passive
component applications’, Am Ceram Soc Bull, 11, 9103–9108.
Ren W et al. (2001), ‘Bismuth zinc niobate pyrochlore dielectric thin films for capacitive
applications’, J Appl Phys, 89, 767–774.
Shen B et al. (2004), ‘Structure and dielectric properties of Bi
2
O
3
–ZnO–CaO–Ta
2
O
5
ceramics’, Ceram Int, 30, 1207–1210.