
products of convergent evolution. In all cases, the finger and thumb domains wrap around DNA and hold it across the
enzyme's active site, which comprises residues primarily from the palm domain. Furthermore, all the polymerases
catalyze the same polymerase reaction, which is dependent on two metal ions.
27.2.2. Two Bound Metal Ions Participate in the Polymerase Reaction
Like all enzymes with nucleoside triphosphate substrates, DNA polymerases require metal ions for activity. Examination
of the structures of DNA polymerases with bound substrates and substrate analogs reveals the presence of two metal ions
in the active site. One metal ion binds both the deoxynucleoside triphosphate (dNTP) and the 3
-hydroxyl group of the
primer, whereas the other interacts only with the 3
-hydroxyl group (Figure 27.12). The two metal ions are bridged by
the carboxylate groups of two aspartate residues in the palm domain of the polymerase. These side chains hold the metal
ions in the proper position and orientation. The metal ion bound to the primer activates the 3
-hydroxyl group of the
primer, facilitating its attack on the α-phosphate group of the dNTP substrate in the active site. The two metal ions
together help stabilize the negative charge that accumulates on the pentacoordinate transition state. The metal ion
initially bound to dNTP stabilizes the negative charge on the pyrophosphate product.
27.2.3. The Specificity of Replication Is Dictated by Hydrogen Bonding and the
Complementarity of Shape Between Bases
DNA must be replicated with high fidelity. Each base added to the growing chain should with high probability be the
Watson-Crick complement of the base in the corresponding position in the template strand. The binding of the NTP
containing the proper base is favored by the formation of a base pair, which is stabilized by specific hydrogen bonds.
The binding of a noncomplementary base is unlikely, because the interactions are unfavorable. The hydrogen bonds
linking two complementary bases make a significant contribution to the fidelity of DNA replication. However, DNA
polymerases replicate DNA more faithfully than these interactions alone can account for.
The examination of the crystal structures of various DNA polymerases indicated several additional mechanisms by
which replication fidelity is improved. First, residues of the enzyme form hydrogen bonds with the minor-groove side of
the base pair in the active site (Figure 27.13). In the minor groove, hydrogen-bond acceptors are present in the same
positions for all Watson-Crick base pairs. These interactions act as a "ruler" that measures whether a properly spaced
base pair has formed in the active site. Second, DNA polymerases close down around the incoming NTP (Figure 27.14).
The binding of a nucleoside triphosphate into the active site of a DNA polymerase triggers a conformational change: the
finger domain rotates to form a tight pocket into which only a properly shaped base pair will readily fit. The mutation of
a conserved tyrosine residue at the top of the pocket results in a polymerase that is approximately 40 times as error prone
as the parent polymerase.
27.2.4. Many Polymerases Proofread the Newly Added Bases and Excise Errors
Many polymerases further enhance the fidelity of replication by the use of proofreading mechanisms. As already noted,
the Klenow fragment of E. coli DNA polymerase I includes an exonuclease domain that does not participate in the
polymerization reaction itself. Instead, this domain removes mismatched nucleotides from the 3
end of DNA by
hydrolysis. The exonuclease active site is 35 Å from the polymerase active site, yet it can be reached by the newly
synthesized polynucleotide chain under appropriate conditions. The proofreading mechanism relies on the increased
probability that the end of a growing strand with an incorrectly incorporated nucleotide will leave the polymerase site
and transiently move to the exonuclease site (Figure 27.15).
How does the enzyme sense whether a newly added base is correct? First, an incorrect base will not pair correctly with
the template strand. Its greater structural fluctuation, permitted by the weaker hydrogen bonding, will frequently bring
the newly synthesized strand to the exonuclease site. Second, after the addition of a new nucleotide, the DNA
translocates by one base pair into the enzyme. The newly formed base pair must be of the proper dimensions to fit into a
tight binding site and participate in hydrogen-bonding interactions in the minor groove similar to those in the