
64. Prove that the function
f ðxÞ5
x
2
sinð1=xÞ if x 6¼ 0
0ifx 5 0
is differentiable at x 5 0, and compute f
0
(0).
65. Let f be differentiable at c. Let y 5 ax1b be the equation
of the tangent line to the graph of f at ( c, f (c)). Prove that
lim
x-c
f ðxÞ2 ðax 1 bÞ
x 2 c
5 0:
Calculator/Computer Exercises
c In each of Exercises 6669, a function f, a viewing rec-
tangle R, and a point c are specified. Graph both f and the
tangent to the graph of f at (c, f (c)inR. b
66. f ðxÞ5
ffiffi
ffi
x
p
; R 5 ½0; 43 ½0; 2; c 5 2
67. f ðxÞ5 x
2
2 2x; R 5 ½0; 13 ½21; 0; c 5 1=2
68. f ðxÞ5 sinðxÞ; R 5 ½0; π=23 ½0; 1; c 5 π=4
69. f ðxÞ5 1=x; R 5 ½1=2; 23 ½0; 2; c 5 1
c In each of Exercises 7073 a function f and
four values c,
x
1
, x
2
and x
3
are given. Using an appropriate viewing rec-
tangle centered about the point P 5 (c, f (c)), graph f and
the three secant lines passing through P that are determined
by (x
1
, f (x
1
)), (x
2
, f (x
2
)), and (x
3
, f (x
3
)). Use the secant line
through (x
3
, f (x
3
)) to estimate f
0
(c). b
70. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffi
ffi
x 1 1
p
; c 5 0; x
1
5 0:5; x
2
5 0:3; x
3
5 0:1
71. f ðxÞ5 x=ðx 1 1Þ; c 5 1; x
1
5 1:8; x
2
5 1:5; x
3
5 1:2
72. f ðxÞ5 11 tanðxÞ; c 5 0; x
1
520:5; x
2
520:3; x
3
520:1
73. f ðxÞ5 sinðxÞ; c 5 π=4; x
1
5 1:2; x
2
5 1; x
3
5 0:8
c In Exercises 7477, approximate f
0
ðcÞ for the given f and c
in the following way: find a small viewing window with P 5
(c, f (c)) near the center. The window should be small enough
so that the graph of f appears to be a straight line. Let Q and
R be the endpoints of the graph of f as it exits this window.
Use the slope of QR as the approximation to f
0
ðcÞ. b
74. f ðxÞ5 tan
π
4
sinðπ x=2Þ
; c 5 1
75. f ðxÞ5 ðx
2
1 x 1 1Þ=ðx
2
1 2Þ; c 5 1
76. f ðxÞ5 x 2 1=x; c 5 1
77. f ðxÞ5 cscðπxÞ; c 5 0:999
c In each of Exercises 7883,
a function f and a point c are
given. Graph the function
φðxÞ5
f ðxÞ2 f ðcÞ
x 2 c
in an appropriate viewing window centered about the line
x 5 c. Use the graph of φ to decide whether or not f
0
ðcÞ exists.
Explain the reason for your answer, and, if your answer is that
f
0
ðcÞ exists, use the graph of φ to approximate the value of
f
0
ðcÞ. b
78. f ðxÞ5 jxj; c 5 0
79. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
x
3
2 3x 1 2
p
; c 5 1
80. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
4
2 2x
3
1 2x 2 1
p
; c 5 1
81. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðxÞ
3
p
; c 5 π=2
82. f ðxÞ5
sin
2
ðxÞ=x if x 6¼ 0
0ifx 5 0
; c 5 0
83. f ðxÞ5
sinðxÞ=x if x 6¼ 0
1ifx 5 0
; c 5 0
c In Exercises 8487, graph the given function f in
the
suggested viewing rectangle R. From this graph, you will be
able to detect at least one point at which f may not be dif-
ferentiable. By zooming in, if necessary, identify each point c
for which f
0
ðcÞ does not exist. Sketch or print your final graph,
and explain what feature of the graph indicates that f is not
differentiable at c. b
84. f ðxÞ5 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
jcosðxÞj
p
; R 5 ½23; 33 ½23; 3
85. f ðxÞ5 cos
4=5
ðxÞ; R 5 ½0; 33 ½0; 1
86. f ðxÞ5 x sin
1=3
ðxÞ; R 5 ½1; 53 ½25; 2:5
87. f ðxÞ5
ffiffiffiffiffi
jxj
p
cos
1=3
ðx
2
Þ; R 5 ½21; 23 ½21:4; 1
88. Graph f ðxÞ52sinðxÞ and gðxÞ5 10
4
ðcosðx 1 :0001Þ2
cosðxÞÞ in the viewing rectangle ½0; 2π3 ½21; 1. What
differentiation formula does the graph illustrate?
89. Let f (x) 5 sin (2x). Graph
gðxÞ5 10
4
f ðx 1 10
24
Þ2 f ðxÞ
for 0 # x # π. Use your graph to identify f
0
(x).
3.3 Rules for Differentiation
In Sections 1 and 2, we learned how to differentiate some specific functions. For
example, we proved that if α is any real number, then
d
dx
ðα x
n
Þ5 α nx
n21
for n 521; 0; 1; 2; 3:
3.3 Rules for Differentiation 189