536 Charged Particle and Photon Interactions with Matter
Becker, D., Bryant-Friedrich, A., Trzasko, C., and Sevilla, M. D. 2003. Electron spin resonance study of DNA
irradiated with an argon-ion beam: Evidence for formation of sugar phosphate backbone radicals. Radiat.
Res.
160: 174–185.
Becker,
D., Adhikary, A., and Sevilla, M. D. 2007. The role of charge and spin migration in DNA radiation
damage. In Charge Migration in DNA Physics, Chemistry and Biology Perspectives, T. Chakraborty
(ed.),
p. 139. Berlin/Heidelberg, Germany: Springer-Verlag.
Becker,
D., Adhikary, A., and Sevilla, M. D. 2010. Mechanism of radiation induced DNA damage: Direct
effects. In Recent Trends in Radiation Chemistry, B. S. M. Rao and J. Wishart (eds.), pp. 509–542.
Singapore/New
Jersey/London, U.K.:
World
Scientic Publishing Co.
Bera,
P. P. and Schaefer III, H. F. 2005. (G-H)
•
-C and G-(C-H)
•
radicals derived from the guanine-cytosine base
pair
cause DNA subunit lesions. Proc. Natl. Acad. Sci. USA 102: 6698–6703.
Bernhard,
W. A.
1981. Solid-state radiation of DNA:
The
bases. Adv. Radiat. Biol. 9: 199–280.
Bernhard,
W. A. and Close, D. M. 2004. DNA damage dictates the biological consequences of ionizing
irradiation: The chemical pathways. In Charged Particle and Photon Interactions with Matter. Chemical,
Physicochemical and Biological Consequences with Applications, A. Mozumdar and Y. Hatano (eds.),
pp.
431–470. New
York/Basel,
Switzerland: Marcel Dekker, Inc.
Bertran,
J., Oliva, A., Rodriguez-Santiego, L., and Sodupe, M. 1998. Single versus double proton-transfer reac-
tions
in
Watson-Crick
base pair radical cations.
A
theoretical study. J. Am. Chem. Soc. 120: 8159–8167.
Boudaïffa,
B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L. 2000. Resonant formation of DNA strand
breaks
by low-energy (3–20
eV)
electrons. Science 287: 1658–1660.
Bowman,
M. K., Becker, D., Sevilla, M. D., and Zimbrick, J. D. 2005. Track structure in DNA irradiated with
heavy
ions. Radiat. Res. 163: 447–454.
Burrow,
P. D., Gallup, G. A., Scheer, A. M., Deni, S., Ptasinska, S., Mark, T., and Scheier, P. 2006. Vibrational
Feshbach
resonances in uracil and thymine. J. Chem. Phys. 124,124310.
Burrow,
P. D., Gallup, G. A., and Modelli, A. 2008. Are there pi* shape resonances in electron scattering from
phosphate
groups? J. Phys. Chem. A 112: 4106–4113.
Cadet,
J., Bourdat, A.-G., D’Ham, C., Duarte, V., Gasparutto, D., Romieu, A., and Ravanat, J.-L. 2000.
Oxidative base damage to DNA: Specicity of base excision repair enzymes. Mutat. Res. 462: 121–128.
Cai, Z. and Sevilla, M. D. 2000. Electron spin resonance study of electron transfer in DNA: Inter-double-strand
tunneling
processes. J. Phys. Chem. B 104: 6942–6949.
Cai,
Z. and Sevilla, M. D. 2004. Studies of excess electron and hole transfer in DNA at low temperature. In
Long Range Transfer in DNA II: Topics in Current Chemistry, G. B. Shuster (ed.), Vol. 237, pp. 103–127.
Berlin/Heidelberg,
Germany/New
York:
Springer-Verlag.
Cai,
Z., Gu, Z., and Sevilla, M. D. 2001. Electron spin resonance study of electron and hole transfer in
DNA: Effects of hydration, aliphatic amine cations, and histone proteins. J. Phys. Chem. B 105:
6031–6041.
Chatgilialoglu, C., Caminal, C., Guerra, M., and Mulazzani, Q. G. 2005. Tautomers of one-electron-oxidized
guanosine.
Angew. Chem. Int. Ed. 44: 6030–6032.
Chatgilialoglu,
C., Caminal, C., Altieri, A., Vougioukalakis, G. C., Mulazzani, Q. G., Gimisis, T., and Guerra, M.
2006. Tautomerism
in the guanyl radical. J. Am. Chem. Soc. 128: 13796–13805.
Chatterjee,
A. 2006. Importance of collaborative research between theoretical modelers and experimentalists,
In
Abstracts, Fifty-Third Annual Meeting of the Radiation Research Society, Philadelphia, PA, p. 3.
Chatterjee,
A. and Holley, W. R. 1993. Computer-simulation of initial events in the biochemical-mechanisms
of
DNA-damage. Adv. Radiat. Biol. 17: 181–226.
Close,
D. M. 2008. From the primary radiation induced radicals in DNA constituents to strand breaks: Low
temperature EPR/ENDOR studies. In Radiation Induced Molecular Phenomena in Nucleic Acid:
A Comprehensive Theoretical and Experimental Analysis, M. K. Shukla and J. Leszczynski (eds.),
pp.493–529.
Berlin/Heidelberg, Germany/New
York:
Springer-Verlag.
Colson,
A.-O. and Sevilla, M. D. 1995a. Elucidation of primary radiation damage in DNA through application
of
ab initio molecular orbital theory. Int. J. Radiat. Biol., 67: 627–645.
Colson,
A.-O. and Sevilla, M. D. 1995b. Structure and relative stability of deoxyribose radicals in a model DNA
backbone:
ab initio molecular orbital calculations. J. Phys. Chem. 99: 3867–3874.
Conwell,
E. M. 2005. Charge transport in DNA in solution: The role of polarons. Proc. Natl. Acad. Sci. USA
102:
8795–8799.
Conwell, E. M. and Rakhmanova, S.
V.
2000. Polarons in DNA. Proc. Natl. Acad. Sci. USA 97: 4556–4560.
Cullis,
P. M., Malone, M. E., and Merson-Davies, L. A. 1996. Guanine radical cations are precursor of
7,8-dihydro-8-oxo-2′-deoxyguanosine but are not precursor of immediate strand breaks in DNA. J. Am.
Chem. Soc.
118: 2775–2781.