550 Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics
we are currently developing [5] . These devices use QDs as a non-linear optical material to switch the
optical signal pulses. For these devices, QDs should be formed only in the photonic crystal straight
waveguide area. The NJP method will enable the formation of the required number of QDs in a
desired region with both high uniformity and high density. Furthermore, we can achieve the required
volume of QDs for optical switching by combining this site-controlled QD formation technique with
the subsequent stacking of spatially ordered InAs QD arrays using MBE growth [31] . In addition
to our proposed PC-based devices [5] , the NJP method has applications to other optical switching
devices, including future high-performance functional devices such as regular arrays of quantum
bits and single-photon emitters for quantum computers and quantum communications [10, 11] .
References
1. Y. Arakawa and H. Sakaki , Multidimensional quantum well laser and temperature dependence of
its threshold current , Appl. Phys. Lett. 40 , 939 – 941 ( 1982 ) .
2. M. Sugawara , N. Hatori , T. Akiyama , Y. Nakata , and G. Ishikawa , Quantum-dot semiconductor
optical amplifi ers for high bit-rate signal processing over 40 Gbit/s , Jpn. J. Appl. Phys. 40 , L488 –
L491 ( 2001 ) .
3. S. Kohmoto , H. Nakamura , T. Ishikawa , and K. Asakawa , Site-controlled self-organization of indi-
vidual InAs quantum dots by scanning tunneling probe-assisted nano-lithograph , Appl. Phys.
Lett. 75 , 3488 – 3490 ( 1999 ) .
4. S. Ohkouchi , Y. Nakamura , H. Nakamura , and K. Asakawa , InAs nano-dot array formation using
nano-jet probe for photonics applications , Jpn. J. Appl. Phys. 44 , 5777 – 5780 ( 2005 ) .
5. K. Asakawa , Y. Sugimoto , Y. Watanabe , N. Ozaki , A. Mizutani , Y. Takata , Y. Kitagawa , H. Ishikawa ,
N. Ikeda , K. Awazu , X. Wang , A. Watanabe , S. Nakamura , S. Ohkouchi , K. Inoue , M. Kristensen ,
O. Sigmund , P.I. Borel , and R. Baets , Photonic crystal and quantum dot technologies for all-optical
switch and logic device , New J. Phys. 8 , 208 ( 2006 ) .
6. K. Tajima , All-optical switch with switch-off time unrestricted by carrier lifetime , Jpn. J. Appl.
Phys. 32 , L1746 – L1749 ( 1993 ) .
7. H. Nakamura , Y. Sugimoto , K. Kanamoto , N. Ikeda , Y. Tanaka , Y. Nakamura , S. Ohkouchi ,
Y. Watanabe , K. Inoue , H. Ishikawa , and K. Asakawa , Ultra-fast photonic crystal/quantum dot
all-optical switch for future photonic network, Opt. Express 12 , 6606 – 6614 ( 2004 ) .
8. N. Ozaki , Y. Takata , S. Ohkouchi , Y. Sugimoto , Y. Nakamura , N. Ikeda , and K. Asakawa , Selective
area growth of InAs quantum dots with a metal mask towards optical integrated circuit devices ,
J. Cryst. Growth 301 –302 , 771 – 775 ( 2007 ) .
9. T. Yoshie , A. Scherer , J. Hendrickson , G. Khitrova , H.M. Gibbs , G. Rupper , C. Ell , O.B. Schchekin ,
and D.G. Deppe , Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocav-
i t y , Nature 432 , 200 – 203 ( 2004 ) .
10. E. Waks , K. Inoue , C. Santori , D. Fattal , J. Vuckovic , G.S. Solomon , and Y. Yamamoto , Secure com-
munication: quantum cryptography with a photon turnstile , Nature 420 , 762 ( 2002 ) .
11. A. Imamoglu , D.D. Awschalom , G. Burkard , D.P. DiVincenzo , D. Loss , M. Sherwin , and A. Small ,
Quantum information processing using quantum dot spins and cavity QED , Phys. Rev. Lett. 83 ,
4204 – 4207 ( 1999 ) .
12. S. Ohkouchi , Y. Nakamura , H. Nakamura , and K. Asakawa , Indium nano-dot arrays formed by
fi eld-induced deposition with a nano-jet probe for site-controlled InAs/GaAs quantum dots , Thin
Solid Films 464– 465 , 233 – 236 ( 2004 ) .
13. Y. Nakamura , N. Ikeda , S. Ohkouchi , Y. Sugimoto , H. Nakamura , and K. Asakawa , Regular array
of InGaAs quantum dots with 100-nm-periodicity formed on patterned GaAs substrates , Physica
E 21 , 551 – 554 ( 2004 ) .
14. Y. Nakamura , N. Ikeda , S. Ohkouchi , Y. Sugimoto , H. Nakamura , and K. Asakawa , Two-dimensional
InGaAs quantum-dot arrays with periods of 70–100 nm on artifi cially prepared nanoholes , Jpn.
J. Appl. Phys. 43 , L362 – L364 ( 2004 ) .
15. K. Nishi , H. Saito , S. Sugou , and J.S. Lee , A narrow photoluminescence linewidth of 21 meV
at 1.35 μ m from strain-reduced InAs quantum dots covered by In
0.2
Ga
0.8
As grown on GaAs
substrates, Appl. Phys. Lett. 74 , 1111 – 1113 ( 1999 ) .
CH017-I046325.indd 550CH017-I046325.indd 550 6/25/2008 3:17:34 PM6/25/2008 3:17:34 PM