
Little q-Jacobi Functions
337
Macdonald,
I.
G.
(1992). Schur functions: theme and variations. In Sdminaire Lotharingien
de Combinatoire, (Saint-Nabor, 1992), volume 498 of Publ. Inst. Rech. Math. Av.,
pages 5-39. Univ. Louis Pasteur, Strasbourg.
Macdonald, I.
G.
(1995). Symmetric Functions and Hall Polynomials. Oxford Univ.
Press, Oxford, 2nd edition.
Macdonald,
I.
G.
(1998). Symmetric Functions and Orthogonal Polynomials, vol-
ume 12 of Univ. Lecture Ser. Amer. Math. Soc., Providence,
RI.
Mehta, M. L. (1967). Random Matrices and the Statistical Theory of Energy Levels.
Academic Press, New York.
Morris, 11,
W.
G.
(1982). Constant term identities for finite and afine root systems:
conjectures and theorems. PhD thesis, University of Wisconsin-Madison.
Opdam, E. (1989). Some applications of hypergeometric shift operators. Invent. Math.,
98:l-18.
Opdam, E. (1995). Harmonic analysis for certain representations of graded Hecke
algebras. Acta Math., 175:75-121.
Opdam, E. M. (1988a). Root systems and hypergeometric functions 111. Compositio
Math., 67:21-49.
Opdam, E. M. (198813). Root systems and hypergeometric functions IV. Compositio
Math., 67:191-209.
Proctor,
R.
(1989). Equivalence of the combinatorial and the classical definitions of
the Schur functions.
J.
Combin. Theory Ser. A, 51:135-137.
Rahman, M. and Suslov, S. K. (1994a). Barnes and Ramanujan-type integrals on the
q-linear lattice. SIAM
J.
Math. Anal., 25:1002-1022.
Rahman, M. and Suslov, S. K. (1994b). The Pearson equation and the beta integral.
SIAM
J.
Math. Anal., 25:646-693.
Rahman, M. and Suslov, S. K. (1996). A unified approach to the summation and inte-
gration formulas for q-hypergeometric functions,
I.
J.
Statist. Plan. Infer., 54:lOl-
118.
Rahman,
M.
and Suslov, S.
K.
(1998a). A unified approach to the summation and inte-
gration formulas for q-hypergeometric functions, 11. Methods Appl. Anal., 5(4):399-
412.
Rahman, M. and Suslov, S.
K.
(199813). A unified approach to the summation and
integration formulas for q-hypergeometric functions, 111. Methods Appl. Anal.,
5(4):413-424.
Richards, D. S. P. (1989). Analogs and extensions of Selberg's integral. In q-series and
Partitions (Minneapolis,
MN,
1988), volume 18 of IMA Vol. Math. Appl., pages
109-137. Springer, New York.
Rogers, L.
J.
(1916). On two theorems of combinatory analysis and some allied iden-
tities. Proc. London Math. Soc., 16(2):315-336.
Rogers, L.
J.
(1983). On a three-fold symmetry in the elements of Heine's series. Proc.
London Math. Soc., 24:171-191.
Sahi, S. (1994). The spectrum of certain invariant differential operators associated to
a Hermitian symmetric space. In Brylinski, J.-L., Brylinski,
R.,
Guillemin,
V.,
and
Kac,
V.,
editors, Lie Theory and Geometry in Honor of Bertram Kostant, volume
123 of Progr. Math., pages 569-576. Birkhauser, Boston, Mass.
Sahi, S. and Knop,
F.
(1996). Difference equations and symmetric polynomials defined
by their zeroes. Internat. Math. Res. Notices, 10:473-486.