
Hilbert space asymptotics for Orthogonal Polynomials
381
Acknowledgments
We are indebted to
M.
Ismail for several illuminating discussions and
comments. We would also like to thank
W.
van Assche for welcome infor-
mation on pertinent literature. Finally, we acknowledge useful comments
and suggestions from two referees, one of whom made us aware of the
references (Kuijlaars et al.,
2003)
and (Kuijlaars,
2003).
References
Askey, R. A. and Wilson, J. A. (1985). Some basic hypergeometric orthogonal poly-
nomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 54(319).
Deift, P. (1999). Orthogonal polynomials and random matrices: A Riemann-Hilbert
approach, volume 3 of Courant Lecture Notes in Mathematics. New York University
Courant Institute of Mathematical Sciences, New York, NY.
Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, volume 35 of Ency-
clopedia of Mathematics and its Applications. Cambridge Univ. Press, Cambridge.
Higgins, J. R. (1977). Completeness and basis properties of sets of special functions,
volume 72 of Cambridge Tracts in Mathematics. Cambridge Univ. Press, Cam-
bridge.
Ismail, M.
E.
H.
(1986). Asymptotics of the Askey-Wilson and q-Jacobi polynomials.
SIA M
J.
Math. Anal., 17: 1475-1482.
Ismail, M.
E.
H. and Wilson, J. A. (1982). Asymptotic and generating relations for
the q-Jacobi and
4(~3
polynomials.
J.
Approx. Theory, 36:43-54.
Koekoek, R. and Swarttouw, R. F. (1994). The Askey-scheme of hypergeometric or-
thogonal polynomials and its q-analogue. report 94-05, Delft University of Tech-
nology.
Kuijlaars, A.
B.
J.
(2003). Riemann-Hilbert analysis for orthogonal polynomials. In
Koelink,
E.
and van Assche, W., editors, Summer School on Orthogonal Polynomi-
als and Special Functions, Leuven 2002, Lecture Notes in Mathematics. Springer-
Verlag. To appear.
Kuijlaars, A.
B.
J., McLaughlin, K. T.-R., van Assche, W., and Vanlessen, M. (2003).
The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials
on [-I,
11.
math.CA/0111252. Preprint.
Ruijsenaars, S.
N.
M. (2002). Factorized weight functions vs. factorized scattering.
Comm. Math. Phys., 228:467-494.
Ruijsenaars, S.
N.
M.
(2003). Relativistic Lam6 functions: Completeness vs. polyno-
mial asymptotics. Indag. Math. N.S., ll(3). Special issue dedicated to Tom Koorn-
winder.
SzegB,
G.
(1975). Orthogonal polynomials, volume XXIII of Colloquium Publications.
American Mathematical Society, Providence, RI, fourth edition.
van Diejen,
J.
F.
(2003). Asymptotic analysis of (partially) orthogonal polynomials
associated with root systems. Intern. Math. Res. Notices, (7):387-410.