
Generalizations of Jacobi's triple product identity
399
Andrews, G.
E.
(1974). Applications of basic hypergeometric functions. SIAM Rev.,
16:441-484.
Bailey,
W.
N. (1936). Series of hypergeometric type which are infinite in both direc-
tions. Quart.
J.
Math. Oxford Series, 7:105-115.
Bailey,
W.
N. (1950). On the basic bilateral hypergeometric series
242.
Quart.
J.
Math. Oxford Series
2,
1:194-198.
Bhatnagar, G. and Milne, S. C. (1997). Generalized bibasic hypergeometric series and
their
u(n)
extensions. Adv. Math., 131:188-252.
Bhatnagar, G. and Schlosser, M. (1998).
C,,
and
D,
very-well-poised
lo(p9
transfor-
mations. Constr. Approx., 14:531-567.
Bressoud, D. M. (1999). Proofs and Confirmations. Cambridge University Press, Cam-
bridge.
Bromwich, T.
J.
(1949). An Introduction to the Theory of Infinite Series. Macmillan,
London, second edition.
Cauchy, A.-L. (1843). MBmoire sur les fonctions dont plusieurs valeurs
. . . .
C.R. Acad.
Sci. Paris, 17:523. Reprinted in Oeuvres de Cauchy, Ser. 1, vol. 8, Gauthier-Villars,
Paris (1893), 42-50.
Euler, L. (1779). De serie Lambertiana plurimisque eius insignibus proprietatibus.
Acta Acad. Sci. Petro. I1 (1783), 29-51; reprinted in Opera Omnia, Ser.
I,
vol. 6,
Teubner, Leibzig (1921), 350-369.
Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, volume 35 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge.
Gould, H.
W.
(1956). Some generalizations of Vandermonde's convolution. Amer.
Math. Monthly, 63234-91.
Gould, H.
W.
(1957). Final analysis of Vandermonde's convolution. Amer. Math.
Monthly, 64:409-415.
Hahn,
W.
(1949). Beitrage zur Theorie der Heineschen Reihen. Die hypergeometrische
q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr.,
2:340-379.
Hardy, G. H. (1940). Ramanujan. Cambridge University Press, Cambridge. Reprinted
by: Chelsea, New York, 1978.
Ismail, M. E. H. (1977). A simple proof of Ramanujan's
141
sum. PTOC. Amer. Math.
Soc., 63:185-186.
Jackson, F. H. (1910). A q-generalization of Abel's series. Rend. Circ. Math. Palermo,
29:340-346.
Jackson, M. (1950). On Lerch's transcendant and the basic bilateral hypergeometric
series
242.
J.
London Math. Soc., 25:189-196.
Jacobi, C.
G.
J.
(1829). Fundamenta Nova Theoriae hnctionum Ellipticarum. Un-
known. Reprinted in Jacobi's Gesammelte Werke, vol. 1, (Reimer, Berlin, 1881-
1891), pp. 49-239; reprinted by Chelsea (New York, 1969); now distributed by the
Amer. Math. Soc., Providence,
RI.
Johnson,
W.
P. (1996). q-Extensions of identities of Abel-Rothe type. Discrete Math.,
159:161-177.
Krattenthaler, C. and Schlosser,
M.
(1999).
A
new multidimensional matrix inverse
with applications to multiple q-series. Discrete Math., 204:249-279.
Lambert,
J.
H. (1758). Observationes variae in mathesin puram. Acta Helvetzca, 3:128-
168.