
 
85 
 
№ 962 
1) f(x) = x
3
 – 6x
2
 + 9   на  [-2; 2],  f(-2) = -8 – 6 ⋅ 4 + 9 = -23, 
f(2) = 8 – 6 ⋅ 4 + 9 = -7,  f′(x) = 3x
2
 – 12x,  f′(x) = 0,  3x(x – 4) = 0 
x
1
 = 0;  x
2
 = 4,  0 ∈ [-2; 2];    4 ∉ [-2; 2],  f(0) = 9, 
[]
() ()
90max
2;2
==
−
fxf ,  
[]
)
)
232min
2;2
−=−=
−
fxf ; 
2) f(x) = x
3
 + 6x
2
 + 9x   [-4; 0],  f(-4) = -64 + 6 ⋅ 16 + 9 ⋅ (-4) = -4,  f(0) = 0, 
f′(x) = 3x
2
 + 12x + 9    f′(x) = 0,   3(x
2
 + 4x + 3) = 0,  D/4 = 4 – 3 = 1, 
x
1
 = -3;   x
2
 = -1,  -3 ∈ [-4; 0];     -1 ∈ [-4; 0],  f(-1) = -1 + 6 – 9 = -4, 
f(-3) = -27 + 6 ⋅ 9 – 9 ⋅ 3 = 0,  
[]
() ( )
)
414min
0;4
−=−=−=
−
ffxf , 
[]
)
)
)
003max
0;4
==−=
−
ffxf ; 
3) f(x) = x
4
 – 2x
2
 + 3    [-4; 3],  f(-4) = 256 – 2 ⋅ 16 + 3 = 227, 
f(3) = 81 – 9 + 3 = 75,  f′(x) = 4x
3
 – 4x,   f′(x) = 0,  4x(x
2
 – 1) = 0, 
x
1
 = 0;   x
2,3
 = ±1,  -1 ∈ [-4; 3];    1 ∈ [-4; 3];     0 ∈ [-4; 3], 
f(-1) = f(1) = 1 – 2 + 3 = 2,  f(0) = 0 + 0 + 3 = 3, 
[]
() ( )
)
211min
3;4
==−=
−
ffxf ,  
[]
)
)
2274max
3;4
=−=
−
fxf ; 
4) f(x) = x
4
 – 8x
2
 + 5     [-3; 2],   f(-3) = 81 – 8 ⋅ 9 + 5 = 14, 
f(2) = 16 – 8 ⋅ 4 + 5 = -11,  f′(x) = 4x
3
 – 16x,  f′(x) = 0,  4x(x
2
 – 4) = 0, 
x
1
 = 0;   x
2,3
 = ±2,   0 ∈ [-3; 2];    2 ∈ [-3; 2];    -2 ∈ [-3; 2], 
f(0) = 0 + 0 + 5 = 5,   f(-2) = f(2) = -11, 
[]
() ( )
)
1122min
2;3
−==−=
−
ffxf ,  
[]
)
)
143max
2;3
=−=
−
fxf . 
№ 963 
Пусть  сторона  прямоугольника  равна  х,  тогда  другая  сторона  равна 
⎟
⎠
⎞
⎜
⎝
⎛
− x
p
2
. 
Тогда диагональ вычислим как:  
()
2
2
2
⎟
⎠
⎞
⎜
⎝
⎛
−+== x
p
xxfl . 
Исследуем эту функцию на min 
=
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
−+=
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
+−+=
′
px
p
xxpx
p
xxf
4
2
4
)(
2
22
2
2