
 
90 
в) f ′(х)=0,   2cosx+2cos2x=0; 4cos
2
x+2cosx–2 = 0,  2cos
2
x + cosx – 1 = 0; 
D = 1 + 8 = 9; cosx 
2
1
4
31
=
+−
,  
nx π+
π
±= 2
3
, n ∈ Z; 
cosx 
1
4
31
−=
−−
, х = π + 2nπ, n ∈ Z, 
f(0) = 2sin0 + sin0 = 0, f 
⎟
⎠
⎞
⎜
⎝
⎛
π
2
3
 = 2sin
2
3π
+ sin3π = –2 + 0 = –2, 
2
33
2
3
3
3
2
sin
3
sin2
3
=+=
π
+
π
=
⎟
⎠
⎞
⎜
⎝
⎛
π
f , 
f (π) = 2sinπ + sin2π = 0 + 0 = 0, 
()() ()()
2
33
3
max;2
2
3
min
2
3
;0
2
3
;0
=
⎟
⎠
⎞
⎜
⎝
⎛
π
=−=
⎟
⎠
⎞
⎜
⎝
⎛
π
=
⎥
⎦
⎤
⎢
⎣
⎡
π
⎥
⎦
⎤
⎢
⎣
⎡
π
fxffxf ; 
2)  f(x) = 2cosx + sin2x; х∈[0; π]; а) f ′(х) = –2sinx + 2cos2x,  
 f ′(х) = 0, –2sinx + 2(1 – 2sin
2
x) = 0, 2sin
2
x + sinx –1 = 0,  D = 1 + 8 = 9, 
()
[] []
[]
⎢
⎢
⎢
⎢
⎣
⎡
π∉
π
−∈π+
π
−=−=
−−
=
π∈
π
π∈
π
∈π+
π
−==
+−
=
;0
2
;,2
2
1
4
31
sin
;0
6
,;0
6
5
;,
6
1
2
1
4
31
sin
Znnxx
Znnxx
n
 
б) f (0) = 2cos0 + sin0 = 2 + 0 = 2,   f (π) = 2cosπ + sinπ = –2 + 0 = –2, 
2
33
2
3
3
3
sin
6
cos2
6
=+=
π
+
π
=
⎟
⎠
⎞
⎜
⎝
⎛
π
f , 
2
33
2
3
3
3
5
sin
6
5
cos2
6
5
−=−−=
π
+
⎟
⎠
⎞
⎜
⎝
⎛
π
=
⎟
⎠
⎞
⎜
⎝
⎛
π
f , 
[]
()()
[]
()()
2
33
6
max;
2
33
6
5
min
;0
;0
=
⎟
⎠
⎞
⎜
⎝
⎛
π
=−=
⎟
⎠
⎞
⎜
⎝
⎛
π
=
π
π
fxffxf . 
№ 972 
1) v(t) = s′(t) = (6t
2
 – t
3
)′ = 12t – 3t
2
 
2) найдем наибольшее значение v(t) 
v′(t) = 12 – 6t ;  v′(t) = 0,  12 – 6t = 0,  t = 2,  t = 2 – точка max., 
v(2) = 24 – 12 = 12. 
№ 973 
Пусть ВС = х, АС = l – x, тогда  
АВ = 
=−−
22
)( xxl
xll 2
2
−
, 
xllxS
ABC
2
2
1
2
−⋅= . 
Найдем наибольшее значение S
ABC
.