
wavelengths at once. From this, a transmittance or
absorbance spectrum is produced. Analysis of these
absorption characteristics reveals details about the mo-
lecular structure of the sample. The use of this ap-
proach was shown to improve sample analysis from
polymer bank notes and aluminum drink cans. Crane
et al. used various processing techniques on FTIR
images of fingerprints on a number of challenging
porous and nonporous substrates to extract the ridge
patterns. Techniques used include basic infrared spec-
troscopic band intensities, addition and subtraction of
band intensity measurements, principal components
analysis, and calculation of second derivatives band
intensities. Trace evidence within the fingerprints
were also recovered and identified.
Related Entries
▶ Biometric System
▶ Face Recognition
▶ Fingerprint Recognition
▶ Iris Recognition
▶ Liveness and Anti Spoofing
▶ Near Infrared Based Face Recognition
▶ Skin Spectroscopy
References
1. Kong, S.G., Heo, J., Boughorbel, F., Zheng, Y., Abidi, B.R.,
Koschan, A., Abidi, M.A.: Multiscale fusion of visible and ther-
mal IR images for illumination-invariant face recognition. Int.
J. Comput. Vis. 71(2), 223–253 (2007)
2. Boyce, C., Ross, A., Monaco, M., Hornak, L., Li, X.: Multispec-
tral iris analysis: a preliminary study. In: Proceedings of IEEE
International Conference on Computer Vision and Pattern Rec-
ognition Workshop on Biometrics (CVPRW), New York. IEEE
publisher, New York (2006)
3. Rowe, R., Nixon, K.A., Corcoran, S.P.: Multi spectral fingerprint
biometrics. In: Proceedings of IEEE Workshop on Information
Assurance and Security, United States Military Academy, West
Point, NY, pp. 14–20 (2005)
4. Buddharaju, P., Pavlidis, I.: Multi-spectral face recognition –
fusion of visual imagery with physiological information. In:
Hammoud, R., Abidi, B., Abidi, M. (eds.) Face Biometrics for
Personal Identification. Springer, Berlin, pp. 91–108 (2007)
5. Socolinsky, D.A., Wolff, L.B., Neuheisel, J.D., Eveland, C.K.:
Illumination invariant face recognition using thermal
infrared imagery. In: Proceedings of the IEEE ICPR, CVPR,
Kauai, HI, pp. 527–534 (2001)
6. Kakadiaris,I.A.,Passalis,G.,Toderici,G.,Lu,Y.,Karampatziakis,N.,
Murtuza, N., Theoharis, T.: Expression-invariant multispectral
face recognition: you can smile now! In: Flynn, P.J.,
Sharath Pankanti. (eds.) Proceedings of SPIE. Biometric Tech-
nology for Human Identification III, vol. 6202, pp. 620 204.1–
620 240.7 (2006)
7. Chang, H., Harishwaran, H., Yi, M., Koschan, A., Abidi, B.,
Abidi, M.: An indoor and outdoor, multimodal, multispectral
and multi-illuminant database for face recognition. In: Proceed-
ings of the IEEE International Conference on Computer Vision
and Pattern Recognition, Biometrics Work Shop, New York,
NY (2006)
8. Pan, Z., Healey, Z., Prasad, M., Tromberg, B.: Face recognition
in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell.
25(12), 1552–1560 (2003)
9. Denes, L.J., Metes, P., Liu, Y.: Hyperspectral face database. Tech-
nical report CMU-RI-TR-02-25, Robotics Institute, Carnegie
Mellon University (2002)
10. Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M.,
Tabassi, E., Bone, J.M.: FRVT 2002: Evaluation Report (2003).
http://www.frvt.org/FRVT2002/documents.htm
11. Chang, H., Koschan, A., Abidi, B., Abidi, M.: Physics-based
fusion of multispectral data for improved face recognition. In:
Proceedings of the International Conference on Pattern Recog-
nition, Hong Kong (2006)
12. Pan Z., Healey G., Prasad M., Tromberg B.: Multiband and
spectral eigenfaces for face recognition in hyperspectral images.
In: Proceedings of SPIE, San Jose, CA, vol. 5779, pp. 144–151
(2005)
13. Imai, F.H.: Preliminary experiment for spectral reflectance esti-
mation of human iris using a digital camera, Munsell Color
Science Laboratory Technical Report (2002)
14. Park, J.H., Kang, M.G.: Iris recognition against counterfeit attack
using gradient based fusion of multi-spectral images. Advances
in Biometric Person Authentication, LNCS vol. 3781. Springer,
Berlin, pp. 1611–3349 (2005)
15. Nixon, K.A., Rowe, R.K.: Multispectral fingerprint imaging for
spoof detection. In: Jain, A.K., Ratha, N.K. (ed.) Proceedings of
SPIE. Biometric Technology for Human Identification II, vol.
5779, pp. 214–225 (2005)
16. Crane, N.J., Bartick, E.G., Perlman, R.S., Huffman, S.: Infrared
Spectroscopic Imaging for Noninvasive Detection of Latent Fin-
gerprints. Forensic Sci. 52(1), 48–53 (2007)
Multistage Matching
Multistage matching is a technique used in order to
simultaneously achieve high accuracy and high speed
during the matching stage: A fast initial algorithm is
used to compare the query to each template of the
998
M
Multistage Matching