
4.5 
Thermodynamic  Characteristics  of Water 
109 
is discontinuous  in slope  at the boundary between homogeneous and hetero- 
geneous  states.  Consider  isobaric  heat  rejection,  indicated  in  Fig.  4.3.  From 
an  initial  temperature  above  the  critical  point,  where  the  system  is  entirely 
gaseous,  temperature  and volume  both  decrease,  reflecting  the  two  degrees 
of freedom  possessed  by a  homogeneous  system.  Eventually,  the  process  en- 
counters  the  boundary  separating  homogeneous  states,  wherein  only  vapor 
is  present,  from  heterogeneous  states,  wherein  vapor  and  water  coexist  at 
equilibrium.  At  that  state,  the  slope  of the  process  changes  discontinuously 
because  the  temperature  of the  system  can  no  longer  decrease.  Instead,  iso- 
baric  heat rejection  results  in  condensation  of vapor, which  is  attended  by a 
sharp  reduction  of volume,  all  at  constant  temperature.  This  simplified  be- 
havior  continues  until  the  vapor  has  been  converted  entirely  into  water,  at 
which  point  the  system  is  again  homogeneous  and  the  slope  of the  process 
changes  discontinuously  a  second  time.  Beyond  that  state,  heat  rejection  re- 
sults in a decrease of both temperature and volume, reflecting the two degrees 
of freedom again possessed by the system. 
In a heterogeneous state, different phases coexist at equilibrium only if their 
temperatures,  pressures,  and  chemical  potentials  are  equal.  The  individual 
phases  are  then  said  to  be 
saturated 
because  the  net  flux  of mass  from  one 
phase to another vanishes. If one of those phases is vapor, the pressure of the 
heterogeneous  system  represents  the 
equilibrium  vapor pressure 
with  respect 
to  water  or  ice,  denoted 
Pw 
and 
Pi, 
respectively.  Should  the  heterogeneous 
system  have  a  pressure  below  the  equilibrium  vapor  pressure,  the  chemical 
potential  of the  vapor  will  be  less  than  that  of the  condensed  phase.  Mass 
will then diffuse from the condensed phase to the vapor phase until chemical 
equilibrium  has  been  restored,  at which  point  the  net  flux  of mass  between 
the  two  subsystems  vanishes.  Conversely,  a  pressure  above  the  equilibrium 
vapor pressure will result  in  a  conversion of mass from vapor to  condensate, 
again until  the  difference  of chemical potential between the phases has been 
eliminated  and chemical equilibrium has been restored. 
According to Gibbs' phase rule, there exists a single state at which all three 
phases  coexist  at  equilibrium.  Defined  by  the  intersection  of surfaces  where 
water and vapor coexist, where vapor and ice coexist, and where water and ice 
coexist,  the triple point for water is given by 
pv =  6.1 mb, 
TT =  273 K, 
vv~ =  2.06 •  105  m 3 kg -1, 
V~w- 
1.00 •  10 -3  m 3 kg -1, 
vTi- 
1.09 •  10 -3 m 3 kg -1, 
(4.26) 
where the subscripts  v, w,  and i refer to vapor, water, and ice, respectively.