
Purine biosynthesis
J.B. Thoden, S. Firestine, A. Nixon, S.J. Benkovic, and H.M. Holden. 2000. Molecular structure of Escherichia coli
PurT-encoded glycinamide ribonucleotide transformylase Biochemistry 39: 8791-8802. (PubMed)
F.M. McMillan, M. Cahoon, A. White, L. Hedstrom, G.A. Petsko, and D. Ringe. 2000. Crystal structure at 2.4 Å
resolution of Borrelia burgdorferi inosine 5
-monophosphate dehydrogenase: Evidence of a substrate-induced hinged-lid
motion by loop 6 Biochemistry 39: 4533-4542. (PubMed)
E.J. Mueller, S. Oh, E. Kavalerchik, T.J. Kappock, E. Meyer, C. Li, S.E. Ealick, and J. Stubbe. 1999. Investigation of the
ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed
mutagenesis Biochemistry 38: 9831-9839. (PubMed)
V.M. Levdikov, V.V. Barynin, A.I. Grebenko, W.R. Melik-Adamyan, V.S. Lamzin, and K.S. Wilson. 1998. The
structure of SAICAR synthase: An enzyme in the de novo pathway of purine nucleotide biosynthesis Structure 6: 363-
376. (PubMed)
J.L. Smith, E.J. Zaluzec, J.P. Wery, L. Niu, R.L. Switzer, H. Zalkin, and Y. Satow. 1994. Structure of the allosteric
regulatory enzyme of purine biosynthesis Science 264: 1427-1433. (PubMed)
G. Weber, M. Nagai, Y. Natsumeda, S. Ichikawa, H. Nakamura, J.N. Eble, H.N. Jayaram, W.N. Zhen, E. Paulik, and R.
Hoffman. 1991. Regulation of de novo and salvage pathways in chemo-therapy Adv. Enzyme Regul. 31: 45-67.
(PubMed)
Ribonucleotide reductases
P. Reichard. 1997. The evolution of ribonucleotide reduction Trends Biochem. Sci. 22: 81-85. (PubMed)
J. Stubbe. 2000. Ribonucleotide reductases: The link between an RNA and a DNA world? Curr. Opin. Struct. Biol. 10:
731-736. (PubMed)
D.T. Logan, J. Andersson, B.M. Sjoberg, and P. Nordlund. 1999. A glycyl radical site in the crystal structure of a class
III ribonucleotide reductase Science 283: 1499-1504. (PubMed)
A. Tauer and S.A. Benner. 1997. The B
12
-dependent ribonucleotide reductase from the archaebacterium Thermoplasma
acidophila: An evolutionary solution to the ribonucleotide reductase conundrum Proc. Natl. Acad. Sci. USA 94: 53-58.
(PubMed) (Full Text in PMC)
A. Jordan, E. Torrents, C. Jeanthon, R. Eliasson, U. Hellman, C. Wernstedt, J. Barbe, I. Gibert, and P. Reichard. 1997.
B
12
-dependent ribonucleotide reductases from deeply rooted eubacteria are structurally related to the aerobic enzyme
from Escherichia coli Proc. Natl. Acad. Sci. USA 94: 13487-13492. (PubMed) (Full Text in PMC)
J. Stubbe and P. Riggs-Gelasco. 1998. Harnessing free radicals: Formation and function of the tyrosyl radical in
ribonucleotide reductase Trends Biochem. Sci. 23: 438-443. (PubMed)
J.A. Stubbe. 1989. Protein radical involvement in biological catalysis? Annu. Rev. Biochem 58: 257-285. (PubMed)
Thymidylate synthase and dihydrofolate reductase
R. Li, R. Sirawaraporn, P. Chitnumsub, W. Sirawaraporn, J. Wooden, F. Athappilly, S. Turley, and W.G. Hol. 2000.
Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel
tuberculosis drugs J. Mol. Biol. 295: 307-323. (PubMed)
P.H. Liang and K.S. Anderson. 1998. Substrate channeling and domain-domain interactions in bifunctional thymidylate
synthase-dihydrofolate reductase Biochemistry 37: 12195-12205. (PubMed)