
© 1999 by CRC Press LLC
Knopoff, L. (1990), “The Modeling of Earthquake Occurrence,” in Disorder and Fracture, (J. C. Charmet,
S. Rou, and E. Guyon, eds.), pp. 284–300 Plenum Press, New York.
Kolmogoroff, A. N. (1941), “Dissipation of Energy in the Locally Isotropic Turbulence,” CR (Doklady)
Acad. Sci. URSS, 32, 16–18. Also in Turbulence — Classic Papers in Statistical Theory (S. K. Fried-
lander and L. Topper, eds.), pp. 159–161, Interscience Publishers, New York, 1961.
Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J. (1990), “Atomistic Mechanisms and
Dynamics of Adhesion, Nanoindentation and Fracture,” Science, 248, 454–461.
Majumdar, A. and Bhushan, B. (1990), “Role of Fractal Geometry in Roughness Characterization and
Contact Mechanics of Surfaces,” ASME J. Tribol., 112, 205–216.
Majumdar, A. and Bhushan, B. (1991), “Fractal Model of Elastic-Plastic Contact between Rough Surfaces,”
ASME J. Tribol., 113, 1–11.
Majumdar, A. and Tien, C. L. (1990), “Fractal Characterization and Simulation of Rough Surfaces,” Wear,
136, 313–327.
Majumdar, A., Bhushan, B., and Tien, C. L. (1991), “Role of Fractal Geometry in Tribology,” Adv. Inf.
Storage Syst., 1., 231–266.
Mandelbrot, B. B. (1967), “How Long is the Coast of Britain? Statistical Self-Similarity and Fractional
Dimension,” Science, 155, 636–638.
Mandelbrot, B. B. (1975), “Stochastic Models for the Earth’s Relief, the Shape and the Fractal Dimension
of the Coastlines, and the Number-Area Rule for Islands,” Proc. Natl. Acad. Sci. U.S.A., 72,
3825–3828.
Mandelbrot, B. B. (1982), The Fractal Geometry of Nature, W. H. Freeman, New York.
Mandelbrot, B. B. (1985), “Self-Affine Fractals and Fractal Dimension,” Phys. Scr., 32, 257–260.
Mate, C. M., McClelland, G. M., Erlandsson, R., and Chiang, S. (1987), “Atomic-Scale Friction of a
Tungsten Tip on a Graphite Surface,” Phys. Rev. Lett., 59, 1942–1945.
McCool, J. I. (1986), “Comparison of Models for the Contact of Rough Surfaces,” Wear, 107, 37–60.
McCool, J. I. (1987), “Relating Profile Instrument Measurements to the Functional Performance of Rough
Surfaces,” J. Tribol., 109, 264–270.
McGuiggan, P., M., Israelachvili, J. N., Gee, M. L., and Homola, A. M. (1989), “Measurements of Static
and Dynamic Interactions of Molecularly Thin Liquid Films between Solid Surfaces,” in New
Materials Approaches to Tribology: Theory and Applications, L. E. Pope, L. L. Fehrenbacher, and
W. O. Winer, eds), Materials Research Society Symposium, 140, 79–88.
Meakin, P. (1987), “Fractal Scaling in Thin Film Condensation and Material Surfaces,” CRC Crit. Rev.
Solid State Mater. Sci., 13, 143–189.
Nayak, P. R. (1971), “Random Process Model of Rough Surfaces,” ASME J. Lubr. Technol., 93, 398–407.
Nayak, P. R. (1973), “Random Process Model of Rough Surfaces in Plastic Contact,” Wear, 26, 305–333.
Oden, P. I., Majumdar, A., Bhushan, B., Padmanabhan, A., and Graham, J. J. (1992), “AFM Imaging,
Roughness Analysis and Contact Mechanics of Magnetic Tape and Head Surfaces,” ASME J. Tribol.,
114, 666–674.
Papoulis, A. (1965), Probability, Random Variables and Stochastic Processes, McGraw Hill, New York.
Peitgen, H. O. and Saupe, D. (1988), The Science of Fractal Images, Springer-Verlag, New York.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992), Numerical Recipes, 2nd ed.,
Cambridge University Press, New York.
Sayles, R. S. and Thomas, T. R. (1978), “Surface Topography as a Nonstationary Random Process,” Nature,
271, 431–434.
Sornette, A. and Sornette, D. (1989), “Self-Organized Criticality and Earthquakes,” Europhys. Lett., 9,
197–202.
Suh, N. P. (1986), Tribophysics, pp. 35–41, Prentice-Hall, NJ.
Thomas, T. R. (1982), Rough Surfaces, Longman, New York.
Timoshenko, S. and Goodier, J. N. (1970), Theory of Elasticity, 3rd ed., McGraw-Hill, New York.
Vicsek, T, (1989), Fractal Growth Phenomena, World Scientific, New Jersey.