210 Thin film growth
© Woodhead Publishing Limited, 2011
of copper nitride thin lms in a reactive Ar/N
2
 magnetron sputtering system, Euro. 
Phys. J.-Appl. Phys. 50, 20503.
Du Y, Ji A L, Ma L B, Wang Y Q, and Cao Z X (2005), Electrical conductivity and 
photoreectance of nanocrystalline copper nitride thin lms deposited at low temperature, 
J. Crystal Growth 280, 490–494.
Hahn U, and Weber W (1996), Electronic structure and chemical-bonding mechanism of 
Cu
3
N, Cui
3
NPd, and related Cu(I) compounds, Phys. Rev. B 53, 12684–12693.
Hojabri A, Haghighian N, Yasserian K, and Ghoranneviss M (2010), The effect of nitrogen 
plasma on copper thin lm deposited by DC magnetron sputtering, IOP Conf. Ser.: 
Mater. Sci. Eng. 12, 012004.
Jacobs  H,  and  Zachwieja  U  (1991),  Kupferpalladiumnitride,  Cu
3
Pd
x
N  mit  x  =  0.020 
und 0.989, Perowskite mit ‘bindender 3d
10
-4d
10
-Wechselwirkung’, J. Less-common 
Met. 170, 185–190.
Ji A L, Li C R, Du Y, Ma L B, Song R, and Cao Z X (2005), Formation of rosette pattern 
in copper nitride thin lms via nanocrystals gliding, Nanotech. 16, 2092–2095.
Ji A L, Huang R, Du Y, Li C R, and Cao Z X (2006a), Growth of stoichiometric Cu
3
N 
thin lms by reactive magnetron sputtering, J. Crystal. Growth 295, 79–83.
Ji A L, Li C R, and Cao Z X (2006b), Ternary Cu
3
NPd
x
 exhibiting invariant electrical 
resisitivity over 200 K, Appl. Phys. Lett. 89, 252120.
Ji A L, Du Y, Li C R, and Cao Z X (2007), Formation of symmetrical relief features in 
nanocrystalline copper nitride thin lms, J. Vac. Sci. Technol. B 25 (1), 208–211.
Juza R, and Hahn  H (1939), Copper nitride (in German), Z.  Anorg.  Allg.  Chem.  241, 
172–178.
Kim  K  J,  Kim  J  H,  and  Kang  J  H  (2001),  Structural  and  optical  characterization  of 
Cu
3
N lms prepared by reactive RF magnetron sputtering, J.  Crystal Growth  222, 
767–772.
Lovett  D  R  (1977),  Semimetals  &  Narrow-bandgap  Semiconductors,  Pion  Limited, 
London.
Ma G M, Alejandro M, and Noboru T (2004), Ab initio total energy calculations of copper 
nitride: the effect of lattice parameters and Cu content in the electronic properties, 
Solid Stat. Sci. 6, 9–14.
Maruyama T, and Morishita T (1996), Copper nitride and tin nitride thin lms for write-
once optical recording media, Appl. Phys. Lett. 69, 890–891.
Moreno-Armenta M G, Martínez-Ruiz A, and Takeuchi N (2004), Ab initio total energy 
calculations of copper nitride: the effect of lattice parameters and Cu content in the 
electronic properties, Solid State Sciences 6, 9–14. 
Musil J, Baroch P, Vlcek J, Nam K H, and Han J G (2005), Reactive magnetron sputtering 
of thin lms: present status and trends, Thin Solid Films 475, 208–218. 
Norskov J K, and Hammer B (1995), Why gold is the noblest of all the metals, Nature 
376, 238–240. 
Nosaka  T,  Yoshitake  M,  Okamoto  A,  Ogawa  S,  and  Nakayama  Y  (2001),  Thermal 
decomposition  of  copper  nitride  thin  lms  and  dots  formation  by  electron  beam 
writing, Appl. Surf. Sci. 169–170, 358–361.
Reddy  K  V  S,  Reddy  A  S,  Reddy  P  S,  and  Uthanna  S  (2007),  Copper  nitride  lms 
deposited by dc reactive magnetron sputtering, J. Mater. Sci. – Materials in Electronics 
18, 1003–1008.
Terada S, Tanaka H, and Kubota K (1989), Heteroepitaxial growth of Cu
3
N thin lms, 
J. Crystal Growth 94, 567–568.
Wang D Y, Nakamine N, and Hayashi Y (1998), Properties of various sputter-deposited 
Cu–N thin lms, J. Vac. Sci. Technol. A 16, 2084–2092.
ThinFilm-Zexian-08.indd   210 7/1/11   9:42:10 AM