226 Thin film growth
© Woodhead Publishing Limited, 2011
  5.  obraztsov, A. n., obraztsova, e. A., Tyurnina, A. V. and Zolotukhin, A. A. Chemical 
vapor deposition of thin graphite lms of nanometer thickness. Carbon 45, 2017–2021 
(2007).
  6.  Khang, D.-Y. et al. Individual aligned single-wall carbon nanotubes on elastomeric 
substrates. Nano Lett. 8, 124–130 (2008).
  7.  Yang, P. et al. Mirrorless lasing from mesostructured waveguides patterned by soft 
lithography. Science 287, 465–467 (2000).
  8.  Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett lms. Nature 
Nanotechnol. 3, 538–542 (2008).
  9.  Eda,  G.,  Fanchini,  G.  and  Chhowalla,  M.  Large-area  ultrathin  lms  of  reduced 
graphene oxide as a transparent and exible electronic material. Nature Nanotechnol. 
3, 270–274 (2008).
 10.  nair, R. R. et al. Fine structure  constant  denes  visual transparency of graphene. 
Science 320, 1308 (2008).
 11.  Lewis,  J.  Material  challenge  for  exible organic  devices.  Mater.  Today  9,  38–45 
(2006).
 12.  Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. and Rogers, J. A. Controlled buckling 
of  semiconductor  nanoribbons  for  strechable  electronics.  Nature  Nanotechnol.  1, 
201–207 (2006).
 13.  Khang, D.-Y., Jiang, H., Huang, Y. and Rogers, J. A. A stretchable form of single 
crystal silicon for high-performance electronics on rubber substrates. Science 311, 
208–212 (2006).
 14  Lee, C., Wei, X., Kysar, J. W. and Hone, J. Measurement of the elastic properties 
and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
 15.  Li,  X.  et  al.  Large-area  synthesis  of  high-quality  and  uniform  graphene  lms  on 
copper foils. Science 324, 1312–1314 (2009).
 16.  Li, X. et al. Transfer of large-area graphene lms for high-performance transparent 
conductive electrodes. Nano Lett. 9, 4359–4363 (2009).
 17.  Hecht,  D.  S.  et  al.  Carbon  nanotube  lm  on  plastic  as  transparent  electrode  for 
resistive touch screens. J. Soc. Inf. Display 17, 941–946 (2009).
 18.  Hass,  J.  et  al.  Why  multilayer  graphene  on  4H-SiC(000-1)  behaves  like  a  single 
sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).
 19.  Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. 
Phys. Rev. Lett. 103, 226803 (2009).
 20.  Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-
gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).
 21.    geng,  H.-Z.  et  al.  Effect  of  acid  treatment  on  carbon  nanotube-based  exible 
transparent conducting lms. J. Am. Chem. Soc. 129, 7758–7759 (2007).
 22.  Schrivera, M., Reganb, W., Losterb, M. and Zettl, A. Carbon nanostructure-aSi:H 
photovoltaic cells with high open-circuit voltage fabricated without dopants. Solid 
State Commun. 150, 561–563 (2010).
 23.  Wu,  J.  et  al. organic light-emitting  diodes  on  solution-processed  metal  nanowire 
mesh transparent electrodes. ACS Nano 4, 43–48 (2010).
 24.  Reina,  A.  et  al.  Large  area,  few-layer  graphene  lms  on  arbitrary  substrates  by 
chemical vapor deposition. Nano Lett. 9, 30–35 (2009).
 25.  Cai, W. W. et al. Large area few-layer graphene/graphite lms as transparent thin 
conducting electrodes. Appl. Phys. Lett. 95, 123115 (2009).
 26.  Lee, J.-Y., Connor, S. T., Cui, Y. and Peumans, P. Solution-processed metal nanowire 
mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).
ThinFilm-Zexian-09.indd   226 7/1/11   9:42:32 AM