
(Mat
n
, +, ◦, 0, 1)
X ◦ Y 0 1
(K, +, ·, 0, 1)
K 0
1
∀a ∈ G ∃b ∈ G, a · b =1.
(Q, +, ·, 0, 1), (R, +, ·, 0, 1), (C, +, ·, 0, 1).
Z
2
= {0, 1}
Q[
√
2] = {a + b
√
2|a, b ∈ Q}
P (X) X. (P (X), ⊕, ∩)
⊕ ∩
⊕ ∩ X = {a, b, c}.
f : P (X) → Z
2
,f(∅)=
¯
0,f(X)=
¯
1,
|X| =1.
f : Z
24
→ Z
4
,f(x(mod 24)) = x(mod 4),
Z
2
× Z
3
∼
=
Z
6
(R, +, ·) ⊕ ◦ R
r ⊕ s = r + s +1,r◦ s = r ·s + r + s.
•
(R, ⊕, ◦)
• (R, ⊕, ◦).
•
(R, ⊕, ◦) (R, +, ·)
x
3
+2x
2
+ x +2 x
2
+2 Z
3
[x].
x
4
+ x
3
+3x −9 2x
3
−x
2
+
6x − 3
Q[x].
−
9
4
x
2
−
27
4
.