
• f : G → G, a → f(a)
G
G
(G, ◦,e,f) G
a ◦ (b ◦ c)=(a ◦ b) ◦ c, ∀a, b, c ∈ G
a ◦ e = e ◦ a = a, ∀a ∈ G
a ◦ f(a)=e, ∀a ∈ A.
∀a ∈ G ∃b ∈ G, a ◦ b = e.
f(a) a
−1
−a.
a ◦ b = b ◦ a a, b ∈ G.
G = Z,a◦ b = a + b, e =0. (Z, +, 0) Z
Z a · b (Z, ·, 1)
GL
n
= {X ∈ Mat
n
|det X =0}
E =(δ
i,j
)
X F(X, X)
X. id ∈F(X, X)
id(x)=x, ∀x ∈ X.
f · g
f · g(x)=f(g(x)),f,g∈F(X, X).
A = F(X, X)
•
• e = id
•
1 n.
G = S
n
a ◦ b
e =
12··· n
12··· n