
The Saalschiitz Chain Reactions and Multiple q-Series Transformations
115
It has first been discovered in (Agarwal and Bressoud, 1989, Eq. 1.1),
(Bressoud, 1980a, Eq. 3.4), (Bressoud, 1980b, Thm. 1:
S
=
0), (Bressoud,
1981, Eq. 5.6), (Bressoud, 1989, Eq. 1.1) and (Bressoud et al., 2000,
p.
7-
2)
by Bressoud et al.
Example 4 (a
=
q: x
=
-q
and
b,
dl
y
+
oo
in Proposition 4.8;
cf.
(Stembridge, 1990,
Eq.
1-11)).
Example 5 (a
=
q:
b,
dl x,
y
-t
oo
in Proposition 4.5).
As a common generalization of the Rogers-Ramanujan identities (1.5a)-
(1.5b), this one has been found in (Agarwal et al., 1987, Eq. 1.5), (Agar-
wal and Bressoud, 1989, Eq. 0.3), (Andrews, 1974, Eq. 1.7), (Andrews,
1976, Eq. 7.3.7), (Andrews, 197913, Eq.
1.3), (Andrews, 1981, Eq. 1.1),
(Andrews, 1984, Eq. 1.3), (Andrews, 1986, Eqs. 3.45-46), (Bressoud,
1980a, Eq. 3.2), (Bressoud, 1980b, Thm. 1:
b
=
I), (Bressoud, 1981,
Eqs. 5.3
&
6.1), (Bressoud, 1989, Eq. 0.3), (Bressoud et al., 2000,
pp.
4-1
&
7-I), (Garrett et al., 1999, Eq. 4.1) and (Stembridge, 1990, Eqs. c-d)
mainly by Andrews and Bressoud et al.
Example
6
(a
=
q:
b,
d, x,
y
+
oo
in Proposition 4.8).
Example
7
(a
=
q:
b
=
-9, d
-t
oo
and
x,
y
=
f
q1I2
in Proposi-
tion 4.3).
Example 8 (a
=
q:
b
=
-9, d
-+
oo
and
x,
y
=
f
q1I2
in Proposi-
tion 4.1).