
Askey- Wilson functions and quantum groups
441
Cherednik, I. (1997). Difference Macdonald-Mehta conjecture. Internat. Math. Res.
Notices, 10:449-467.
Faddeev, L. (2000). Modular double of a quantum group. In ConfLrence Moshk Flato
1999, Vol. I (Dijon), volume 21 of Math Phys. Stud., pages 149-156. Kluwer Acad.
Publ., Dordrecht.
Gasper, G. and Rahman, M. (1990). Basic hypergeometric series, volume 35 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge.
Ismail,
M.
and Rahman, M. (1991). The associated Askey-Wilson polynomials. Bans.
Amer. Math. Soc., 328:201-237.
Kharchev, S., Lebedev,
D.,
and Semenov-Tian-Shansky, M. (2002). Unitary represen-
tations of uq(s[(2,R)), the modular double and the multiparticle q-deformed Toda
chains. Comm. Math. Phys., 225(3):573-609.
Koelink,
E.
(1996). Askey-Wilson polynomials and the quantum SU(2) group: survey
and applications. Acta Appl. Math., 44(3):295-352.
Koelink, E. and Rosengren,
H.
(2002). Transmutation kernels for the little q-Jacobi
function transform. Rocky Mountain
J.
Math., 32(2):703-738. Conference on Spe-
cial Functions (Tempe,
AZ,
2000).
Koelink, E. and Stokman,
J.
V.
(2001a). The Askey-Wilson function transform. In-
ternat. Math. Res. Notices, 22:1203-1227.
Koelink, E. and Stokman,
J.
V.
(2001b). Fourier transforms on the quantum SU(1,l)
group. Publ. Res. Inst. Math. Sci., 37(4):621-715. With an appendix by M. Rah-
man.
Koornwinder, T.
H.
(1984). Jacobi functions and analysis on noncompact semisim-
ple Lie groups. In Special Functions: Group Theoretical Aspects and Applications,
Math. Appl., pages 1-85. Reidel, Dordrecht.
Koornwinder, T.
H.
(1993). Askey-Wilson polynomials as zonal spherical functions
on the su(2) quantum group. SIAM
J.
Math. Anal., 24:795-813.
Nishizawa, M. (2001). q-special functions with Iql
=
1 and their application to discrete
integrable systems.
J.
Phys. A, 34(48):10639-10646. Symmetries and Integrability
of Difference Equations (Tokyo, 2000).
Nishizawa, M. and Ueno, K. (2001). Integral solutions of hypergeometric q-difference
systems with Jql
=
1. In Physics and Combinatorics 1999 (Nagoya), pages 273-286.
World Sci. Publishing, River Edge, NJ.
Noumi, M. and Mimachi, K. (1992). Askey-Wilson polynomials as spherical functions
on SU,(2). In Quantum Groups (Leningrad, 1990), volume 1510 of Lecture Notes
in Math., pages 98-103. Springer, Berlin.
Noumi, M. and Stokman,
J.
V.
(2000). Askey-Wilson polynomials: an affine Hecke
algebra approach. Preprint.
Rosengren,
H.
(2000). A new quantum algebraic interpretation of the Askey-Wilson
polynomials. In q-Series from a Contemporary Perspective (South Hadley, MA,
1998), volume 254 of Contemp. Math., pages 371-394. Amer. Math. Soc., Provi-
dence, RI.
Ruijsenaars, S. N. M. (1997). First order analytic difference equations and integrable
quantum systems.
J.
Math. Phys., 38(2):1069-1146.
Ruijsenaars, S. N. M. (1999).
A
generalized hypergeometric function satisfying four
analytic difference equations of Askey-Wilson type. Comm. Math. Phys., 206(3):639-
690.