
Expansions in q-Polynomials
459
References
Ahlfors, L. V.
(1979).
Complex Analysis. McGraw-Hill, New York, third edition.
Andrews,
G.
E. and Askey, R. A.
(1985).
Classical orthogonal polynomials. In Or-
thogonal Polynomials and Applications (Bar-le-Duc, 1984), volume
1171
of Lecture
Notes in Math., pages
36-62.
Springer-Verlag, Berlin.
Andrews, G. E., Askey,
R.
A., and Roy,
R.
(1999).
Special Functions. Cambridge
University Press, Cambridge.
Antonov, V. A. and Kholshevnikov, K. V.
(1979).
An estimate for Jacobi polynomials
in the complex domain. Vestnik Leningrad. Univ. Mat. Mekh. Astronom.,
(2):lO-
13, 118.
Askey,
R.
A.
(1975).
Orthogonal Polynomials and Special Functions. CBMS-NSF Re-
gional Conferences Series in Applied Mathematics. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA.
Askey,
R.
A. and Wilson,
J.
A.
(1985).
Some basic hypergeometric orthogonal poly-
nomials that generalize Jacobi polynomials. Memoirs Amer. Math. Soc.,
54(319).
Atakishiyev, N. M. and Suslov, S. K.
(1992).
Difference hypergeometric functions. In
Gonchar, A. A. and Saff, E. B., editors, Progress in Approximation Theory (Tampa,
FL, 1990), volume
19
of Computational Mathematics, pages
1-35.
Springer-Verlag,
New York.
Boas, R. P. and Buck, R. C.
(1964).
Polynomial Expansions of Analytic Functions.
Springer-Verlag, Berlin. Second printing, corrected. Ergebnisse der Mathematik
und ihrer Grenzgebiete, N.F., Bd.
19.
Bromwich, T.
J.
(1965).
An Introduction to the Theory of Infinite Series. Macmillan,
New York. Second Edition, revised.
Bustoz,
J.
and Suslov, S.
K.
(1998).
Basic analog of Fourier series on a q-quadratic
grid. Methods Appl. Anal.,
5:l-38.
Carlson, B. C.
(1974a).
Expansions of analytic functions in Jacobi series. SIAM
J.
Math. Anal.,
5:586-596.
Carlson, B. C.
(197413).
Inequalities for Jacobi polynomials and Dirichlet averages.
SIAM
J.
Math. Anal.,
5:797-808.
Davis,
P.
J.
(1963).
Interpolation and Approximation. Blaisdell Publishing Co. Ginn
and Co., New York-Toronto-London.
Dienes, P.
(1957).
The Taylor Series: An Introduction to the Theory of Functions of
a Complex Variable. Dover, New York.
ErdBlyi, A., Magnus, W., Oberhettinger, F., and Tricomi,
F.
G.
(1953).
Higher Tran-
scendental Functions, Vol. II. McGraw-Hill, New York-Toronto-London. Based, in
part, on notes left by Harry Bateman.
Floreanini, R. and Vinet,
L.
(1995).
A model for the continuous q-ultraspherical poly-
nomials.
J.
Math. Phys.,
36:3800-3813.
Gasper, G. and Rahman, M.
(1990).
Basic Hypergeometric Series. Cambridge Uni-
versity Press.
Ismail, M. E.
H.,
Rahman, M., and Stanton, D.
(1999).
Quadratic q-exponentials and
connection coefficient problems. Proc. Amer. Math. Soc.,
127(10):2931-2941.
Ismail, M. E.
H.,
Rahman, M., and Zhang, R.
(1996).
Diagonalization of certain
integral operators 11.
J.
Comp. Appl. Math.,
68:163-196.
Ismail,
M.
E.
H.
and Stanton, D.
(2000).
Addition theorems for the q-exponential
functions. In Ismail, M.
E.
H.
and Stanton, D. W., editors, q-Series from a Con-