
 
124 
§ 59 Применение производной и интеграла 
к решению практических задач 
№ 1025 
v(t) = s′(t), s – первообразная v(t) 
1)
()
()
6846413
4
0
3
4
0
2
=+=+=+=
∫
ttdttts ; 
2)
()
()
3
1
21
3
2
418
2
1
3
2
2
9
18
23
2
2
3
1
23
3
1
2
=−+=−−+=+=+=
∫
tt
dtttts . 
№ 1026 
1) v(t) = 0,  4t – t
2
 = 0,  t = 0,  t = 4; 
2)
() ()
()
3
2
100
3
64
32
3
24
4
0
3
2
4
0
2
2
1
=−−=−=−==
∫∫
t
tdtttdttvts
t
t
. 
№ 1027 
1)   у = 3х – 2х
2
 + С;  2)  у = 2х
3
 – 4х
2
 + х + С;   3)  
Cey
x
+=
2
2
3
; 
4)  
CxCxy +=+⋅⋅= 2sin22sin
2
1
4
. 
5)   у = 3 ⋅ (–cos х) + С = –3cos х + С;   6)   у = sin x + cos x + C. 
№ 1028 
1)   у = –cos x + C; –cos 0 + C = 0,  C = 1,  y = –cos x + 1 
2)   у = 2sin x + C; 2sin π + C = 1,  C = 1,  y = 2sin x + 1 
3)   у = x
3
 + 2x
2
 – x + C; 1 + 2 – 1 + C = –2,  C = –4;  y = x
3
 + 2x
2
 – x – 4 
4)   у = 2x + x
2
 – x
3
 + C; –2 + 1 + 1 + C = 2,  C = 2;   у = 2x + x
2
 – x
3
 + 2 
5)   у = e
x
 + C; e + C = 1,  C = 1 – e,  y = e
x
 + 1 – e 
6)   у = –e
–x
 + C;  –1 + C = 2    C = 3    y = –e
–x
 + 3. 
№ 1029 
y′ = –С
1
ωsin ωx + С
2
ωcos ωx;  y′′ = –С
1
ω
2
cos ωx – С
2
ω
2
sin ωx; 
y′′ + ω
2
у = –С
1
ω
2
cos ωx – С
2
ω
2
sin ωx + ω
2 
С
1
cos ωx + ω
2 
С
2
sin ωx = 0; 
0 = 0 – верно при любых С
1
 и С
2
. 
№ 1030 
Скорость распада m′(t) = 
л10
г001,0
=0,0001 
m′(t) = k m (t)  решение  m(t) = m
0
e
–kt 
В нашем случае m′(t)=0,0001 и m
0
=1,  t=10,  m(t) = 0,999,  0,999=1⋅ e
–10k 
e
–10k
 = 0,999,    –10k = ln 0,999,  
10
999,0ln
−=k ,  
t
e
⋅
⋅=
10
999,0ln
15,0, 
5,0ln
10
999,0ln
=⋅ t
, 
999,0ln
5,0ln10
=
t ,   t ≈ 6928.