
 
178 
3
1
cos ±=x ,  
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−π±=
∈π+±=
Zllx
Znnx
   ,2
3
1
arccos
   ,2
3
1
arccos
. 
Ответ:
Znnx ∈π+±=   ,2
3
1
arccos
,  Zllx ∈π+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−π±=   ,2
3
1
arccos  
4) sin2x = cos
2
x,  2sin x ⋅ cos x – cos
2
x = 0,  cos x(2sin x – cos x) = 0, 
⎢
⎣
⎡
=−
=
0cossin2
0cos
xx
x
; 
()
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
−=
∈π+
π
=
Zllx
Znnx
l
  ,
6
12
  ,
2
; 
()
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
−=
∈
π
+
π
=
Zl
l
x
Zn
n
x
l
  ,
212
1
  ,
24
. 
Ответ: 
Znnx ∈π+
π
=   ,
2
, 
Zllarctgx ∈π+=   ,
2
1
. 
№ 1182 
1) sin2x = 3cos x,  2sin x ⋅ cos x = 3cos x,  cos x(2sin x – 3) = 0, 
⎢
⎢
⎣
⎡
=
=
2
3
sin
0cos
x
x
; 
⎢
⎢
⎣
⎡
φ∈
∈π+
π
=
x
Znnx   ,
2
. 
Ответ: 
Znnx ∈π+
π
=   ,
2
. 
2) sin4x = cos
4
x – sin
4
x,  2sin2x ⋅ cos2x = (cos
2
x – sin
2
x)(sin
2
x + cos
2
x), 
2sin2x ⋅ cos2x = cos2x,  cos2x(2sin2x – 1) = 0, 
⎢
⎢
⎣
⎡
=
=
2
1
2sin
02cos
x
x
; 
()
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
−=
∈π+
π
=
Zllx
Znnx
l
  ,
6
12
  ,
2
2
; 
()
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
+
π
=
Zl
l
n
x
l
  ,
212
1-x
Zn  ,
24
 
Ответ: 
Zn
n
x ∈
π
+
π
=   ,
24
, 
()
Zl
l
x
l
∈
π
+
π
−=   ,
212
1
. 
3) 2cos
2
x = 1 + 4sin2x,  (2cos
2
x – 1) = 4sin2x,  cos2x = 4sin2x, 
4
2sin
2cos
=
x
x
; ctg x = 4; x = arcctg4 + nπ, n ∈ Z. 
Ответ: x = arcctg4 + nπ, n ∈ Z 
4) 2cos x + cos2x = 2sin x,  2(cos x – sin x) + (cos
2
x – sin
2
x) = 0, 
2(cos x – sin x) + (cos x – sin x)(cos x – sin x) = 0, 
(cos x – sin x)(2 + cos x + sin x) = 0, 
⎢
⎣
⎡
−=+
=−
2sincos
0sincos
xx
xx
; 
Znnx ∈π+
π
=   ,
4
 x ∈ 
φ
 
Ответ: 
Znnx ∈π+
π
=   ,
4
.