
 
185 
⎢
⎢
⎢
⎢
⎣
⎡
=
⎟
⎠
⎞
⎜
⎝
⎛
−
π
=
⎟
⎠
⎞
⎜
⎝
⎛
π
−
02
4
cos
0
4
3sin
x
x
; 
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
=−
π
∈π=
π
−
Zllx
Znnx
  ,
2
2
4
  ,
4
3
; 
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
−=
∈
π
+
π
=
Zl
l
x
Zn
n
x
  ,
28
  ,
312
 
Ответ: 
Zn
n
x ∈
π
+
π
=   ,
312
,  
Zl
l
x ∈
π
+
π
−=   ,
28
. 
№ 1195 
1) sinx + sin5x = sin3x,  2sin3x ⋅ cos2x – sin5x = 0,  sin3x(2cos2x – 1) = 0, 
⎢
⎢
⎣
⎡
=
=
2
1
2cos
03sin
x
x
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
±=
∈
π
=
Zl
l
x
Zn
n
x
  ,
26
  ,
3
 Ответ:
Zn
n
x ∈
π
=   ,
3
,    Zl
l
x ∈
π
+
π
±=   ,
26
; 
2) cos7x – cos3x = 3sin5x,  -2sin5x⋅sin2x–3sin5x=0,  sin5x(2sin2x + 3) = 0, 
⎢
⎢
⎣
⎡
−=
=
2
3
2sin
05sin
x
x
; 
Zn
n
x ∈
π
=   ,
5
. 
№ 1196 
1) cosx ⋅ sin9x = cos3x ⋅ sin7x,  
()()
xxxx 10sin4sin
2
1
10sin8sin
2
1
+=+
, 
sin8x – sin4x = 0,  2sin2x ⋅ cos6x = 0, 
⎢
⎣
⎡
=
=
06cos
02sin
x
x
; 
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
=
Zl
l
x
Zn
n
x
  ,
612
  ,
2
 Ответ: 
Zn
n
x ∈
π
=   ,
2
,  
Zl
l
x ∈
π
+
π
=   ,
612
; 
2) sinxcos5x = sin9x ⋅ cos3x,  
()()
xxxx 12sin6sin
2
1
6sin4sin
2
1
+=+−
, 
sin12x + sin4x = 0,  2sin8x ⋅ cos4x = 0, 
⎢
⎣
⎡
=
=
04cos
08sin
x
x
; 
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
=
Zl
l
x
Zn
n
x
  ,
48
  ,
8
 Ответ:  
Zn
n
x ∈
π
=   ,
8
,  
Zl
l
x ∈
π
+
π
=   ,
48
. 
№ 1197 
1) 5 + sin2x = 5(sinx + cosx),  4 + (sinx + cosx)
2
 = 5(sinx + cosx), 
cosx + sinx = t 
tx =
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
π
−
4
cos2,  t
2
 – 5t + 4 = 0,  D = 25 – 16 = 9, 
4
2
35
1
=
+
=t ,   122
2
4
2
4
cos >===
⎟
⎠
⎞
⎜
⎝
⎛
π
−
t
x  - нет решений, 
1
2
35
t
2
=
−
= , 
2
1
2
4
cos ==
⎟
⎠
⎞
⎜
⎝
⎛
π
−
t
x ,